Abstract:
Provided is a method of manufacturing a thin film transistor panel that may reduce manufacturing costs. The method includes forming gate wires including a gate line and a gate electrode on an insulating substrate and forming data wires including source and drain electrodes, the data wires being insulated from the gate wires. The method further includes forming a passivation layer covering the gate and data wires, forming contact holes exposing the drain electrodes by etching the passivation layer, and forming a pixel electrode by depositing an indium-free transparent conductive film on the exposed drain electrode and the passivation layer and then dry etching the transparent conductive film.
Abstract:
A display substrate includes a gate line, a data line, a pixel electrode and a source pad part. The gate line is formed on a base substrate. The data line crosses the gate line to define a pixel area. The pixel electrode makes contact with the base substrate. The source pad part is formed on an end portion of the data line, the source pad part including a source metal layer, a conductive etch stop layer formed on the source metal layer and a source pad electrode formed on the conductive etch stop layer. Thus, the conductive etch stop layer of the source pad part prevents the source metal layer of the source pad part from being damaged and the conductive etch stop layer of the source pad part may fully make contact with the source pad electrode.
Abstract:
A thin film transistor substrate that has reduced production cost and defect rate is presented. The thin film transistor substrate includes a gate wiring line formed on an insulating substrate and including a gate electrode, a data wiring line formed on the gate wiring line and including a source electrode and a drain electrode, a passivation layer pattern formed on parts of the data wiring line other than the drain electrode and a pixel region, and a pixel electrode electrically connected to the drain electrode. The pixel electrode includes zinc oxide.
Abstract:
A method of manufacturing a thin film transistor array panel, including: forming gate lines on a substrate; forming a gate insulating layer on the gate lines; forming semiconductor layers on the gate insulating layer; forming data lines and drain electrodes on the semiconductor layers; depositing a passivation layer on the data lines and the drain electrodes; forming a first photoresist layer including a first portion and a second portion that is thinner than the first portion on the passivation layer; forming a first preliminary contact hole exposing the data lines by etching the passivation layer by using the first photoresist layer as a mask; removing the second portion of the first photoresist; forming a first contact hole by expanding the first preliminary contact hole and opening portions by etching the passivation layer by using the first portion of the first photoresist layer as a mask; depositing a conductor layer; and forming pixel electrodes in the opening portions and a first contact assistant member in the first contact hole by removing the first photoresist layer and the conductor layer located thereon.
Abstract:
A method of manufacturing a liquid crystal display includes: forming a gate line including a gate electrode on a first substrate; forming a gate insulating layer on the gate line; sequentially forming a semiconductor layer, an amorphous silicon layer, and a data metal layer on the entire surface of the gate insulating layer; aligning the edges of the semiconductor layer and the data metal layer; forming a transparent conductive layer on the gate insulating layer and the data metal layer; forming a first pixel electrode and a second pixel electrode by patterning the transparent conductive layer; and forming a data line including a source electrode, a drain electrode, and an ohmic contact layer by etching the data metal layer and the amorphous silicon layer, using the first pixel electrode and the second pixel electrode as a mask, and exposing the semiconductor between the source electrode and the drain electrode.
Abstract:
An etchant includes about 0.1 percent by weight to about 30 percent by weight of ammonium persulfate (NH4)2S2O8, about 0.1 percent by weight to about 10 percent by weight of an inorganic acid, about 0.1 percent by weight to about 10 percent by weight of an acetate salt, about 0.01 percent by weight to about 5 percent by weight of a fluorine-containing compound, about 0.01 percent by weight to about 5 percent by weight of a sulfonic acid compound, about 0.01 percent by weight to about 2 percent by weight of an azole compound, and a remainder of water. Accordingly, the etchant may have high stability to maintain etching ability. Thus, manufacturing margins may be improved so that manufacturing costs may be reduced.
Abstract translation:蚀刻剂包括约0.1重量%至约30重量%的过硫酸铵(NH 4)2 S 2 O 8,约0.1重量%至约10重量%的无机酸,约0.1重量%至约10重量%的 约0.01重量%至约5重量%的含氟化合物的乙酸盐,约0.01重量%至约5重量%的磺酸化合物,约0.01重量%至约2重量% 的唑类化合物,剩余的水。 因此,蚀刻剂可能具有高稳定性以保持蚀刻能力。 因此,可以提高制造裕度,从而可以降低制造成本。
Abstract:
A display substrate includes an insulating substrate, a thin-film transistor (TFT), a pixel electrode, a signal line and a pad part. The insulating substrate has a display region and a peripheral region surrounding the display region. The TFT is in the display region of the insulating substrate. The pixel electrode is in the display region of the insulating substrate and electrically connected to the TFT. The signal line is on the insulating substrate and extends from the peripheral region toward the display region. The pad part is in the peripheral region and electrically connects to the signal line. The pad part is formed in a trench of the insulating substrate and includes a region that extends into the insulating substrate. Therefore, the signal line may be securely attached to the insulating substrate.
Abstract:
The present invention relates to an etchant for etching metal wiring, and the metal wiring etchant according to the present invention includes hydrogen peroxide at about 5 wt % to about 15 wt %, an oxidant at about 0.5 wt % to about 5 wt %, a fluoride-based compound at about 0.1 wt % to about 1 wt %, a nitrate-based compound at about 0.5 wt % to about 5 wt %, and a boron-based compound at about 0.05 wt % to about 1 wt %.
Abstract:
A thin film transistor substrate and a method of manufacturing the thin film transistor substrate comprises forming a gate line and a data line intersecting each other with a gate insulating layer interposed and defining a pixel area on the substrate, a thin film transistor electrically connected to the gate line and the data line, and a stepped-structure occurring pattern overlapping at least one of the gate line and the data line; forming a passivation layer having a stepped-structure portion formed by the stepped-structure occurring pattern on the substrate; forming a photoresist pattern having a second stepped-structure portion corresponding to the stepped-structure portion on the passivation layer; patterning the passivation layer using the photoresist pattern as a mask; forming a transparent conductive layer on the substrate; and removing the photoresist pattern where the transparent conductive layer is covered by a stripper penetrating through the stepped-structure portion of the photoresist pattern and forming a pixel electrode connected to the thin film transistor.
Abstract:
A thin film transistor array and method of manufacturing the same include a pixel electrode formed of a transparent conductive layer on a substrate, a gate line formed of the transparent conductive layer and an opaque conductive layer on the substrate, a gate electrode connected to the gate line and formed of the transparent conductive layer and an opaque conductive layer on the substrate, a gate insulating layer which covers the gate line and the gate electrode, a semiconductor layer formed on the gate insulating layer to overlap the gate electrode, a data line which intersects the gate line, a source electrode connected to the data line to overlap a part of the semiconductor layer, and a drain electrode connected to the pixel electrode to overlap a part of the semiconductor layer.