Abstract:
An electronic device manufacturing apparatus includes: a reaction chamber including a wall having a ground potential level; a reaction gas inlet for introducing a reaction gas into the reaction chamber; a high frequency power generator for generating a high frequency voltage for exciting the reaction gas into plasma state or dissociated state; a cathode electrode connected to the high frequency power generator; and a floating capacitance formed between a potential level of the cathode electrode and the ground potential level. An impedance adjusting capacitor is inserted so as to be in series with the floating capacitance. The impedance adjusting capacitor has a capacitance value less than that of the floating capacitance.
Abstract:
A hydrogen preparing apparatus is disclosed which reforms a hydrocarbon and/or a hydrocarbon containing an oxygen atom to obtain a hydrogen-containing gas and separates hydrogen from this hydrogen-containing gas. The apparatus includes a porous substrate and a hydrogen separating film which is formed on a predetermined surface portion of the porous substrate and which selectively separates hydrogen, a reforming catalyst for reforming the hydrocarbon being supported in the pores of the porous substrate. A reforming catalyst for reforming the hydrocarbon is supported on a honeycomb carrier, and the hydrogen separating film is arranged on the downstream side of the honeycomb carrier. The surface area of the catalyst per unit volume of the apparatus can be increased, whereby the apparatus can be miniaturized. A hydrogen separating efficiency can also be improved. The hydrogen manufacturing apparatus can be prevented from being damaged by a difference of expansion between the porous substrate and the container.
Abstract:
A coordinate input device including a flexible upper substrate mounted on a rigid lower substrate and having a centrally-located input operating portion. The upper substrate includes a first resistance layer laminated thereon and X-axis electrodes formed on the first resistance layer on opposite sides of the input operating portion. The lower substrate includes a second resistance layer laminated thereon and Y-axis electrodes formed on the second resistance layer on opposite sides of the input operating portion. A spacer group is mounted between the upper and lower substrates to maintain a predetermined clearance, with spacers of the spacer group being having a height of 4 .mu.m or less, and being arranged at a pitch in the range of 0.3 to 1.0 mm. A position detecting circuit is provided for locating a depressed portion of the upper substrate by measuring a change in voltage caused by contact between the first and second resistance layers. A method is also provided for making the coordinate input device.
Abstract:
In a read only semiconductor memory, signal lines such as data lines are subjected to an undesired parasitic capacitance which restricts the signal changing rate along the lines. The parasitic capacitance which is driven by a memory cell will become increasingly higher as the memory capacity is increased. According to the present invention, a differential sense amplifier is used to amplify the data signals which are read out of the memory cell. At the same time, a dummy cell is used to generate a reference potential which is to be referred to by the differential sense amplifier. In particular, a dummy cell arrangement is provided wherein each dummy cell includes at least two series-connected semiconductor elements to provide a predetermined dummy cell conductance to establish a reference value. Another aspect of the invention lies in the use of column switches between a common data line and data lines of the memory arrays for coupling only one data line at a time through the column switch to the sense amplifier. In addition, a built-in error-correcting-code circuit is provided which operates in conjunction with a selecting circuit so that memory cells delivering a predetermined set of data are spaced apart from one another by at least predetermined distances to reduce the likelihood of errors from immediately adjacent memory cells.
Abstract:
In a read only semiconductor memory, signal lines such as data lines are subjected to an undesired parasitic capacitance which restricts the signal changing rate along the lines. The parasitic capacitance which is driven by a memory cell will become increasingly higher as the memory capacity is increased. According to the present invention, a differential sense amplifier is used to amplify the data signals which are read out of the memory cell. At the same time, a dummy cell is used to generate a reference potential which is to be referred to by the differential sense amplifier. In particular, a dummy cell arrangement is provided wherein each dummy cell includes at least two series-connected semiconductor elements to provide a predetermined dummy cell conductance to establish a reference value. Another aspect of the invention lies in the use of column switches between a common data line and data lines of the memory arrays for coupling only one data line at a time through the column switch to the sense amplifier. In addition, a built-in error-correcting-code circuit is provided which operates in conjunction with a selecting circuit so that memory cells delivering a predetermined set of data are spaced apart from one another by at least predetermined distances to reduce the likelihood of errors from immediately adjacent memory cells.
Abstract:
An exemplary elevator passenger interface device includes a passenger communication component that facilitates communications between a passenger and an elevator system. Such communications include passenger input to request elevator service and information provided to the passenger. A controller controls the passenger communication component to control its functionality including providing selected information to the passenger. The controller includes a customization module configured to change the functionality of the passenger communication component responsive to authorized user input that is distinct from the passenger input. The authorized user input includes a selection of at least one of a feature used to present information to a passenger or a feature used to allow a passenger to request elevator service.
Abstract:
An exemplary elevator passenger interface device includes a passenger communication component that facilitates communications between a passenger and an elevator system. Such communications include passenger input to request elevator service and information provided to the passenger. A controller controls the passenger communication component to control its functionality including providing selected information to the passenger. The controller includes a customization module configured to change the functionality of the passenger communication component responsive to authorized user input that is distinct from the passenger input. The authorized user input includes a selection of at least one of a feature used to present information to a passenger or a feature used to allow a passenger to request elevator service.
Abstract:
A hydrogen separator comprising a porous substrate composed mainly of a ceramic having a large number of pores connecting from one surface of the substrate to other surface, and a hydrogen-separating layer made of a hydrogen permselective metal formed on the porous substrate via an intermediate layer made of an electron-conductive ceramic. The hydrogen separator hardly generates defects such as peeling, cracks or the like in the hydrogen-separating layer and is suitable for use even when the hydrogen separator is exposed to a heat cycle, used under high temperature conditions or/and used for long-term.
Abstract:
A hydrogen gas separator fixing structure includes a gas separator having a support and a membrane provided on at least one surface of the support, which membrane contains a first metal capable of separating hydrogen gas from a hydrogen-containing gas, a metal flange connected to at least one open end of the gas separator, a bonding layer containing a second metal, provided at the portion at which the gas separator and the metal flange are connected to each other and on the surface of the gas separation membrane side of the portion, a packing provided on the bonding layer, and a ring-shaped metal member capable of fixing the packing by pressing, provided so that at least part thereof is in contact with the bonding layer, wherein the bonding layer is provided by a heat treatment conducted at a temperature lower than the melting point of the second metal.
Abstract:
There is disclosed a membrane reactor 100 for a shift reaction including a selectively permeable membrane 3 having an H2-selective permeation ability and a catalyst 4 which promotes a chemical reaction, the selectively permeable membrane 3 is a Pd membrane or a Pd alloy membrane, the catalyst 4 is a precious metal catalyst, and the selectively permeable membrane preferably has a thickness of 20 μm or less. The membrane reactor 100 for the shift reaction simultaneously performs inhibition of a methanation reaction and progression of a shift reaction while preventing deterioration of a thinly formed selectively permeable membrane, whereby hydrogen can efficiently be collected.