Abstract:
An application programming interface schema, method and system for communicating between first and second application programming interfaces within a process control system includes processing a call from a first application programming interface for a data request, translating the data request from the first application programming interface into one or more methods of a unified application programming interface, and implementing the one or more methods of the unified application programming interface with a second application programming interface. A first unified layer receives a transmission request from a proprietary application programming interface, and translates the transmission request into one or more methods of a unified application programming interface. A second unified layer implements methods of the unified application programming interface with the wireless network application programming interface.
Abstract:
A high density memory device is fabricated three dimensionally in layers. To keep points of failure low, address decoding circuits are included within each layer so that, in addition to power and data lines, only the address signal lines need be interconnected between the layers.
Abstract:
A process control system coordinates with an associated asset management system to implement a plant safety mechanism and, in particular, to prevent unintended changes to, or otherwise undesired operation of, one or more process control equipment resources in a process plant. A maintenance technician uses the asset management system to request access to one or more of the process control equipment resources. A process operator receives the request via the process control system and grants or denies the request. Process control equipment resources for which a process operator grants a request are inoperable, in part or in whole, by the process control system. Upon completion of the maintenance task, the maintenance technician requests to return control of the process control equipment resource to the process operator. The return is complete when the process operator acknowledges the return of the resource to the process control system.
Abstract:
RNA interference is provided for inhibition of ocular hypertension target mRNA expression for lowering elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension. Ocular hypertension targets include carbonic anhydrase II, IV, and XII; β1- and β2 adrenergic receptors; acetylcholinesterase; Na+/K+-ATPase; and Na—K-2Cl cotransporter. Ocular hypertension is treated by administering interfering RNAs of the present invention.
Abstract translation:提供RNA干扰用于抑制眼高血压靶mRNA表达,以降低开角型青光眼或高眼压患者眼内压升高。 眼睛高血压指标包括碳酸酐酶II,IV和XII; 1和β2肾上腺素能受体; 乙酰胆碱酯酶; Na + / K + -ATPase; 和Na-K-2Cl共转运蛋白。 通过施用本发明的干扰RNA来治疗眼高血压。
Abstract:
The use of HMG-CoA reductase inhibitors (e.g., statins) to treat glaucoma, control intraocular pressure, preserve the trabecular meshwork, protect against ocular neurodegeneration and/or protect against glaucomatous retinopathy is described. The preferred HMG-CoA reductase inhibitors, which are statins having an RI value of 0.2 to 0.7 (e.g., pravastatin), are administered via topical application to the affected eye(s) of the patient.
Abstract:
Antagonists of cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor are provided for attenuation of CTGF signaling in a method of down-regulation of receptor signaling and downstream decreased signaling of connective tissue growth factor in ocular disorders involving inappropriate CTGF signaling. Ocular disorders involving inappropriate CTGF signaling include ocular hypertension, glaucoma, glaucomatous retinopathy, optic neuropathy, macular degeneration, diabetic retinopathy, choroidal neovascularization, and proliferative vitreoretinopathy, for example. Such disorders are treated by administering antagonists of the present invention.
Abstract:
A read-only data storage and retrieval device is presented having no moving parts and requiring very low power. Addressing can be accomplished sequentially where the address increments automatically or can be accomplished randomly. High density storage is achieved through the use of a highly symmetric diode matrix that is addressed in both coordinate directions; its symmetry makes the Dual-addressed Rectifier Storage (DRS) Array very scaleable scalable, particularly when made as an integrated circuit. For even greater storage flexibility, multiple digital rectifier storage arrays can be incorporated into the device, one or more of which can be made removable and interchangeable.
Abstract:
In various embodiments, an adder circuit includes a plurality of transistors, all of the transistors being of a single type selected from the group consisting of NMOS transistors and PMOS transistors, and dissipates no more power than an equivalent CMOS circuit.
Abstract:
A memory device having a plurality of storage locations disposed along a plurality of generally parallel lines includes, connected to the lines, a decoder circuit for selecting one line, and, connected to each line, a line-disabling circuit for selectively preventing the line from being energized during line selection.
Abstract:
An electronic circuit such as a latch or a sequencer includes a plurality of transistors, all of the transistors being either NMOS transistors or PMOS transistors, and dissipates less than or approximately the same amount of power as an equivalent CMOS circuit.