Abstract:
A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity. A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.
Abstract:
Methods of accessing and ablating abnormal epithelium tissue in an alimentary canal are provided. The methods can include steps of (i) inserting an operative element into an alimentary canal such that the proximate to a portion of the alimentary canal having tissue to be ablated; and (ii) using the operative element to apply cryogenic ablation to a site of abnormal tissue.
Abstract:
A method for treating a sphincter provides a polymer material having a liquid state. The method also provides a catheter having a distal end, a tissue piercing device carried by the distal end, and an energy delivery device coupled to the tissue piercing device. The tissue piercing device has a lumen. The method introduces the catheter into an esophagus and pierces an exterior sphincter tissue surface within with the tissue piercing device. The method advances the tissue piercing device into an interior sphincter tissue site and conveys the polymer material while in a liquid state through the lumen into the interior sphincter tissue site. The method delivers energy to the tissue piercing device to transform the polymer material into a less liquid state within the interior sphincter tissue site, to thereby remodel the sphincter.
Abstract:
A method and system for shrinking dilatations of a body, removing excess, weak or diseased tissue, and strengthening remaining tissues of the lumen walls. A catheter is disposed near the dilatation and fixed in position by inflatable occlusion balloons. Body fluids present in the occluded dilatation are evacuated and treatment fluid is exuded under pressure into the dilatation. Pressure is maintained by the treatment fluid while energy is applied by the catheter to heat the treatment fluid, causing the lumen walls to absorb the treatment fluid. Additional energy is then applied so as to preferentially heat the lumen wall tissues which have absorbed the treatment fluid, while at the same time treatment fluid is circulated to cool the inner surface of the lumen walls. The dilatation is occluded, a saline solution is introduced and absorbed into the lumen-wall tissue in the occluded region of the dilatation and then heated by application of radio frequency (“RF”) or other energy in order to soften only the lumen-wall tissue of the dilatation, the dilatation is shrunk by application of a chilled saline solution and a vacuum, and additional RF or other energy is emitted to ablate, further shrink, and harden only the lumen-wall tissue of the dilatation, without destroying the inner surface of the lumen or other tissues of the body beyond the lumen walls, thereby promoting growth of epithelial cells.
Abstract:
An infusion array ablation apparatus includes an elongated delivery device having a lumen and an infusion array positionable in the lumen. The infusion array includes an RF electrode and at least a first and a second infusion member. Each infusion member has a tissue piercing distal portion and an infusion lumen. At least one of the first or second infusion members is positionable in the elongated delivery device in a compacted state and deployable from the elongated delivery device with curvature in a deployed state. Also, at least one of the first or second infusion members exhibits a changing direction of travel when advanced from the elongated delivery device to a selected tissue site. At least one infusion port is coupled to one of the elongated delivery device, the infusion array, the first infusion member or the second infusion member.
Abstract:
A method of forming a composite lesion pattern in a tissue region at or near a sphincter comprising providing a catheter having a plurality of energy delivery devices coupled to the catheter. The catheter is introduced at least partially into the sphincter. Energy is delivered from the energy delivery devices to produce the composite lesion pattern. The composite lesion pattern comprises a radial distribution of lesions about the tissue region and a longitudinal distribution of lesions along the tissue region.
Abstract:
Methods treat a tissue region. In one arrangement, the methods deploy an electrode on a support structure in a tissue region at or near the cardia of the stomach. In one embodiment, the support structure has a proximal region and a distal region. The proximal region is enlarged in comparison to the distal region, and the electrode is carried by the enlarged proximal surface. The methods advance the electrode in a path to penetrate the tissue region and couple the electrode to a source of radio frequency energy to ohmically heat tissue and create a lesion in the tissue region.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
A method and system for treating body structures or tissue allows treatment by any of ablation, coating, expansion, plumping, shaping, and shrinking. Treatment sitesinclude any of a sphincter, sinus or orifice. During treatment, electrodes emerge from apertures in a balloon. The balloon with liquid from a circulating bath cools tissue in direct contact with electrodes and immediately adjacent, so that discrete regions are treated, with minimal damage to adjacent structures. Sensors, coupled to electrodes, measure treatment properties such as: temperature, impedance and nervous activity. Measurements are used for: diagnostic assessment, determining treatment parameters, providing nervous stimulation and/or blocking, and feedback for controlling energy delivery. The catheter includes an optical path that can be coupled to external viewing apparatus. Endoscopic methods, including fluoroscopic, fiber optic, or radioscopy allow examining tissue and determining position of electrodes. The catheter includes a suction apparatus used to remove liquids obscuring treatment area and to gently conform treatment area to electrodes.
Abstract:
A method of treating a sphincter that provides an expandable basket structure with a first energy delivery device. The basket structure is introduced in a sphincter. The first energy delivery device is advanced from the basket structure into an interior of the sphincter. Sufficient energy is delivered from the first energy delivery device to create a desired tissue effect in the sphincter. Thereafter, the basket structure is removed from the sphincter.