Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
Embodiments of apparatus, computer-implemented methods, systems, and computer-readable media are described herein for expediting execution time memory alias checking. A sequence of instructions targeted for execution on an execution processor may be received or retrieved. The execution processor may include a plurality of alias registers and circuitry configured to check entries in the alias register for memory aliasing. One or more optimizations may be performed on the received or retrieved sequence of instructions to optimize execution performance of the received or retrieved sequence of instructions. This may include a reorder of a plurality of memory instructions in the received or retrieved sequence of instructions. After the optimization, one or more move instructions may be inserted in the optimized sequence of instructions to move one or more entries among the alias registers during execution, to expedite alias checking at execution time. Other embodiments may be described and/or claimed.
Abstract:
In an embodiment, a processor includes at least one core and a dynamic language accelerator to execute a bytecode responsive to a memory mapped input/output (MMIO) operation on a file descriptor associated with the dynamic language accelerator. The processor may block execution of native code while the dynamic language accelerator executes the bytecode. Other embodiments are described and claimed.
Abstract:
In an embodiment, a system includes a processor including one or more cores and a plurality of alias registers to store memory range information associated with a plurality of operations of a loop. The memory range information references one or more memory locations within a memory. The system also includes register assignment means for assigning each of the alias registers to a corresponding operation of the loop, where the assignments are made according to a rotation schedule, and one of the alias registers is assigned to a first operation in a first iteration of the loop and to a second operation in a subsequent iteration of the loop. The system also includes the memory coupled to the processor. Other embodiments are described and claimed.
Abstract:
In an embodiment, a system includes a processor including at least one core to execute operations of a loop that includes S stages. The system also includes stage insertion means for adding a delay stage to the loop to increase a lifetime of a corresponding register associated with a first variable of the loop and to delay storage of contents of the register. The system also includes a dynamic random access memory (DRAM). Other embodiments are described and claimed.
Abstract:
Example methods and apparatus to manage partial commit-checkpoints are disclosed. A disclosed example method includes identifying a commit instruction associated with a region of instructions executed by a processor, identifying candidate instructions from the region of instructions, and generating a processor partial commit-checkpoint to save a current state of the processor, the checkpoint based on calculated register values associated with live instructions, and including instruction reference addresses to link the candidate instructions.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
In general, in one aspect, the disclosure describes a method to detect a transaction and direct non transactional memory (TM) user functions within the transaction. The non TM user functions are treated as TM functions and added to the TM list.