Abstract:
A method for routing and switching operator RF signals includes providing one or more Digital Remote Units (DRUs) and providing at least one Digital Access Unit (DAU) configured to communicate with at least one of the one or more DRUs. A first DRU is operable to communicate using a first set of frequencies characterized by a first frequency band over a first geographic footprint and a second set of frequencies characterized by a second frequency band different from the first frequency band over a second geographic footprint including and surrounding the first geographic footprint. A second DRU is operable to communicate using the first set of frequencies over a third geographical footprint and a third set of frequencies characterized by a third frequency band different from the first frequency band and the second frequency band over a fourth geographic footprint including and surrounding the third geographic footprint.
Abstract:
An efficient baseband predistortion linearization method for reducing the spectral regrowth and compensating memory effects in wideband communication systems using effective multiplexing modulation technique such as wideband code division multiple access and orthogonal frequency division multiplexing is disclosed. The present invention is based on the method of piecewise pre-equalized lookup table based predistortion, which is a cascade of a lookup table predistortion and piecewise pre-equalizers.
Abstract:
A remote radio head unit (RRU) system is disclosed. The present invention is based on the method of adaptive digital predistortion to linearize a power amplifier inside the RRU. The power amplifier characteristics such as variation of linearity and asymmetric distortion of the amplifier output signal are monitored by a wideband feedback path and controlled by the adaptation algorithm in a digital module. Therefore, embodiments of the present invention can compensate for the nonlinearities as well as memory effects of the power amplifier systems and also improve performance, in terms of power added efficiency, adjacent channel leakage ratio and peak-to-average power ratio. The present disclosure enables a power amplifier system to be field reconfigurable and support multi-modulation schemes (modulation agnostic), multi-carriers, multi-frequency bands and multi-channels. Consequentially, the remote radio head system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems.
Abstract:
A power amplifier using N-way Doherty structure with adaptive bias supply power tracking for extending the efficiency region over the high peak-to-average power:ratio of the multiplexing modulated signals such as wideband code division multiple access and orthogonal frequency division multiplexing is disclosed. In an embodiment, present invention uses a dual-feed distributed structure to an N-way Doherty amplifier to improve the isolation between at least one main amplifier and at least one peaking amplifier and, and also to improve both gain and efficiency performance at high output back-off power. Hybrid couplers can be used at either or both of the input and output. In at least some implementations, circuit space is also conserved due to the integration of amplification, power splitting and combining.
Abstract:
A method for operating a DAS includes providing a set of digital remote units (remotes) operable to send and receive wireless radio signals. Each of the set of remotes is associated with a geographic area. The method also includes providing a digital access unit (host) operable to communicate with the set of remotes, receiving uplink signals at one or more of the set of remotes, and monitoring train activity in the geographic areas. The method further includes increasing a gain coefficient associated with one of the set of remotes in response to determining an increase in monitored train activity, decreasing a gain coefficient associated with another of the set of remotes in response to determining a decrease in monitored train activity, and transmitting, to the host, scaled uplink signals associated with the one of the set of remotes and the another of the set of remotes.
Abstract:
A system for transporting IP data in a Distributed Antenna System includes at least one Digital Access Units (DAU) having a plurality of optical input/output ports and at least one Ethernet port and a plurality of Digital Remote Units (DRUs) coupled to the at least one DAU. Each of the plurality of DRUs has a plurality of optical input/output ports and at least one Ethernet port. The at least one DAU includes a Framer/Deframer operable to separate cellular payload data from IP data and a network switch operable to buffer the cellular payload data and the IP data and to route the IP data received from the plurality of DRUs to the at least one Ethernet port of the DAU.
Abstract:
A system for routing signals in a Distributed Antenna System includes a plurality of local Digital Access Units (DAUs) located at a Local location. Each of the plurality of local DAUs is coupled to each other and operable to route signals between the plurality of local DAUs. Each of the plurality of local DAUs includes one or more Base Transceiver Station (BTS) RF connections. Each of the plurality of BTS RF connections is operable to be coupled to one of one or more sectors of a BTS. The system also includes a plurality of remote DAUs located at a Remote location. The plurality of remote DAUs are coupled to each other and operable to transport signals between the plurality of remote DAUs.
Abstract:
A remote radio head unit (RRU) system is disclosed. The present invention is based on the method of adaptive digital predistortion to linearize a power amplifier inside the RRU. The power amplifier characteristics such as variation of linearity and asymmetric distortion of the amplifier output signal are monitored by a wideband feedback path and controlled by the adaptation algorithm in a digital module. Therefore, embodiments of the present invention can compensate for the nonlinearities as well as memory effects of the power amplifier systems and also improve performance, in terms of power added efficiency, adjacent channel leakage ratio and peak-to-average power ratio. The present disclosure enables a power amplifier system to be field reconfigurable and support multi-modulation schemes (modulation agnostic), multi-carriers, multi-frequency bands and multi-channels. Consequentially, the remote radio head system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems.
Abstract:
A remote radio head unit (RRU) system for achieving high data rate communications in a Distributed Antenna System is disclosed. The Distributed Antenna System is configured as a Neutral Host enabling multiple operators to exist on one DAS system. The present disclosure enables a remote radio head unit to be field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. As a result, the remote radio head system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems.
Abstract:
A digital predistortion linearization method is provided for increasing the instantaneous or operational bandwidth for RF power amplifiers employed in wideband communication systems. Embodiments of the present invention provide a method of increasing DPD linearization bandwidth using a feedback filter integrated into existing digital platforms for multi-channel wideband wireless transmitters. An embodiment of the present invention utilizes a DPD feedback signal in conjunction with a low power band-pass filter in the DPD feedback path.