Abstract:
Microstructured films such as brightness enhancing films, polymerizable resin compositions comprising an organic component and surface modified nanoparticles, and surface modified nanoparticles are described. The microstructured film has a polymerized structure comprising the reaction product of the polymerizable resin composition (e.g. having a refractive index of at least 1.58). The cured nanocomposite (e.g. structure) can exhibit improved crack resistance. In some embodiments, the flexibility is expressed in terms of a cylindrical mandrel bend test property (e.g. a mandrel size to failure of less than 6 mm or a mandrel size to failure according to the equation D=1000(T/0.025−T) wherein T is the thickness in millimeters of a (e.g. preformed base layer). In other embodiments, the flexibility is expressed in terms of a tensile and elongation property (e.g. a tensile strength at break of at least 25 MPa and an elongation at break of at least 1.75%).
Abstract:
Presently described are optical films, such as a brightness enhancing film, having a polymerized microstructured surface disposed on a preformed polymeric film wherein the film has a thickness of no greater than 3 mils and the polymerized microstructured surface consists of the reaction product of a substantially non-brominated polymerizable resin composition.
Abstract:
The present invention provides pressure-sensitive adhesives having a refractive index of at least 1.48. The pressure-sensitive adhesives comprise at least one monomer containing a substituted or an unsubstituted aromatic moiety.
Abstract:
A polymerizable composition that includes a monomer of the formula wherein X is hydrogen or one or more of methyl, chlorine, bromine or iodine, R1 is a straight or branched alkyl linking group of 2 to 12 carbon atoms, R2 is hydrogen or methyl, and n is 1 to 3; and a monomer of the formula wherein X1 and X2 are each independently hydrogen or one or more of methyl, chlorine, bromine or iodine, and R2 is hydrogen or methyl is described having a high index of refraction and being suitable for use in forming an optical product.
Abstract:
Naphthyloxyalkyl(meth)acrylate monomers having a high refractive index and whose respective homopolymer has a low glass transition temperature.
Abstract:
Described are coatings, composite structures containing coatings, and compositions for preparing and methods of preparing coatings and composite structures, wherein the compositions comprise inorganic oxide particles and polymerizable brominated compounds, and coatings comprise inorganic oxide particles and a brominated polymer.
Abstract:
An ultraviolet light absorbing material that resists blooming and migration is made up of a fluoropolymer and an amide functional ultraviolet light absorbing compound, wherein the polymer and the amide functional ultraviolet light absorbing compound are hydrogen bonded to one another. Polymeric films that contain a polymeric matrix and the ultraviolet light absorbing material are useful as the top layer in multilayer constructions such as retroreflective sheetings and conformable marking sheets.
Abstract:
A fluorescent yellow article containing a blend of an N,N'-disubstituted 3,4:9,10-perylenebis(dicarboximide) dye and a fluorescent yellow-green dye soluble in a polymeric matrix and meeting the chromaticity requirements of CIE and ASTM and having a fluorescence luminance factor of greater than 5, as well as a method of preparing such articles is described. Also described is a fluorescent retroreflective article containing a color layer having first and second sides, wherein the article includes retroreflective elements on one side of the color layer or a retroreflective base sheet disposed on one side of the color layer, where the color layer includes the above-mentioned fluorescent yellow article.
Abstract:
The invention provides hydroxy-functional cyanoacrylate ultraviolet radiation absorbing compounds. The radiation absorbing compounds can be incorporated into step growth polymers such as polyurethanes, polyesters, and polycarbonates. The invention also provides such polymers having the radiation compound incorporated therein and articles prepared therefrom.