Abstract:
A system for emissions mitigation for a hybrid automobile vehicle includes an automobile vehicle provided with motive power from: a battery pack; an engine; and a controller in communication with the battery pack and the engine. A threshold battery pack state-of-charge (SOC) is predetermined. A minimum battery pack SOC is less than the threshold battery pack SOC. An engine-on charge depletion (EOCD) command is issued by the controller to start the engine in an engine-catalyst light-off operation condition when the vehicle is operating using power from the battery pack and when the threshold battery pack state-of-charge (SOC) is reached to mitigate against exceeding vehicle emissions standards.
Abstract:
An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
Abstract:
A method for controlling a powertrain of a vehicle includes calculating, via a controller, an optimal torque target for the powertrain as a function of system limits of the vehicle. The method includes commanding, via transmission of an output torque signal, an actual output torque of the powertrain to pursue or follow the calculated optimal torque target during a steady-state torque request condition. Additionally, the method includes detecting a predetermined vehicle event during the steady-state torque request condition, and shaping the output torque signal via the controller. A variable gain factor may be used in response to detection of the predetermined vehicle event to allow the output torque signal to temporarily deviate from the calculated optimal torque target during the steady-state torque request condition. A powertrain has an engine, an electric machine, and a controller programmed to execute the method.
Abstract:
A method for operating a multi-mode powertrain system includes executing a selection scheme to evaluate operating the powertrain system in a plurality of candidate powertrain states including a one-motor electric vehicle (EV) range responsive to an output torque request. A respective minimum cost for operating the powertrain system in each of the candidate powertrain states including the one-motor EV range is determined. A preferred powertrain state is selected as one of the candidate powertrain states including the one-motor EV range that is associated with a minimum of the respective minimum costs. The powertrain system is controlled in the preferred powertrain state responsive to the output torque request.
Abstract:
A powertrain system includes an engine coupled to a multi-mode transmission configured to transfer tractive torque to an output member coupled to a ground wheel. A method for operating the powertrain system includes identifying an undesirable operating region for the multi-mode transmission associated with driveline growl including an input torque range and an output torque range. In response to a command to traverse the undesirable operating region from a first operating region to a second operating region, a fast engine torque transition is executed including controlling the engine as a fast-adjusting torque actuator to control input torque from the engine to the multi-mode transmission and correspondingly controlling motor torque from a torque machine to the multi-mode transmission to maintain output torque from the multi-mode transmission responsive to an output torque request while traversing the undesirable operating region from the first operating region to the second operating region.
Abstract:
A method can be used to control a hybrid vehicle and includes the following steps: (a) receiving, via a control module, an input; (b) determining, via the control module, whether the hybrid vehicle is traveling on a highway based, at least in part, on a vehicle speed and an output torque request; (c) commanding, via the control module, the hybrid powertrain to switch from a charge-depletion mode to a blended mode if the hybrid vehicle is traveling on a highway; and (d) commanding, via the control module, the hybrid powertrain to use energy from the energy storage device via the electric motor-generator so as to maintain a substantially constant target state of charge (SOC) discharge rate.
Abstract:
A controller architecture for a vehicle including a multi-mode powertrain system includes an engine controller having a control routine for determining and executing engine torque commands responsive to a hybrid engine torque command, and a control routine for determining a propulsion axle torque command responsive to an output torque request. The controller architecture further includes transmission controller having a control routine for selecting and effecting operation of the passive transmission in a preferred gear responsive to the output torque request. The controller architecture further includes a hybrid controller having control routines for determining and executing torque commands for each of the non-combustion torque machines and for determining the hybrid engine torque command to achieve a desired axle torque in response to the propulsion axle torque command with the passive transmission operating in the preferred gear.
Abstract:
A method for adjusting hydraulic line pressure applied to one or more clutch devices in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes predicting a first plurality of powertrain parameters for an upcoming event. For each of a plurality of engine torques, a predicted output torque and a predicted clutch load are determined that minimize a total powertrain operating cost based on an operator torque request and the predicted first plurality of powertrain parameters. Hydraulic line pressure is adjusted based on the engine torque having a lowest powertrain operating cost among the plurality of available engine torques.