Abstract:
A cover covering an object includes an inner surface of the cover facing the object and spaced from the object, and an outer surface of the cover opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the cover. The local energy absorber includes an energy absorbing core layer operatively attached to the inner surface of the cover and a frangible face sheet layer attached to the energy absorbing core layer facing the object. The frangible face sheet layer is to initiate fracture of the frangible face sheet layer during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
Abstract:
A process for fabricating a curved beam including a micro-truss structure. In one embodiment, the process includes fabricating the micro-truss structure on a bottom facesheet, where the micro-truss structure is only partially cured so that it is readily bendable, and then forming the partially cured micro-truss structure and bottom facesheet over a curved fixture, where the partially cured micro-truss structure is then fully cured and hardened to its final curved state. A top facesheet is then adhered to a top surface of the micro-truss structure. In an alternate embodiment, a curved bottom facesheet is forced flat against a fixture and the micro-truss structure is formed while the bottom facesheet is secured to the fixture to a partially cured state. The bottom facesheet is then released from the fixture, which causes it to return to its curved configuration causing the micro-truss structure to bend.
Abstract:
A mold comprising a scaffolding support structure including a base member, a top member and side members defining an enclosure. The scaffolding structure further includes a plurality of interconnected and elongated support members interspersed within the enclosure between the base member and the top member so as to define open space within the enclosure for ease of heating and cooling fluid flow, and a plurality of flow partitions within the enclosure. An intermediate layer is formed on the top member and a working surface layer is formed on the intermediate layer.
Abstract:
A vehicle hood covering an underhood object includes an inner surface of the vehicle hood facing the underhood object and spaced from the underhood object, and an outer surface of the vehicle hood opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the vehicle hood. The local energy absorber is a multiply-connected structure. The local energy absorber includes a wall defining an interior surface having symmetry about a central plane normal to the inner surface of the vehicle hood. A plurality of apertures is defined in the wall symmetrically about the central plane to initiate buckling and fracture in the wall during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
Abstract:
A support system includes a support, a root magnet, an object, and a cover magnet. The root magnet is fixedly attached to the support. The cover magnet is fixedly attached to the object. The root magnet and the cover magnet are configured to be magnetically attracted to one another such that the object is magnetically attached to the support when the root magnet and the cover magnet are aligned with one another in an attachment arrangement. The root magnet and the cover magnet are configured to magnetically repel one another such that the object is detached from the support when the root magnet and the cover magnet are unaligned with one another in a detachment arrangement.
Abstract:
A door assembly includes a structure including an exterior panel defining an opening, and a grab bar. The grab bar is moveable relative to the exterior panel. A first linkage system and a second linkage system interconnect the grab bar and the structure. A drive assembly is coupled to the first linkage system and the second linkage system to move the grab bar between an extended position and a retracted position. The drive assembly includes a Shape Memory Alloy (SMA) actuator that contracts in response to a control signal, to move the grab bar. A seal may be provided to seal between the grab bar and the structure. A heating element may provide a thermal load to heat the grab bar, a seal surrounding the grab bar, or both.
Abstract:
A conformable shape memory article comprises a deformable enclosure covering and discrete particles disposed within the enclosure covering, wherein the discrete particles comprise a shape memory polymer, or the discrete particles have a hollow shell structure comprising a shape memory alloy. In a more specific embodiment, the enclosure is elastically deformable.
Abstract:
An energy harvesting system includes a heat engine and a component. The heat engine includes a belt, a first member, and a second member. The belt includes a strip of material and at least one wire at least partially embedded longitudinally in the strip of material. The wire includes a shape memory alloy material. A localized region of the at least one wire is configured to change crystallographic phase between martensite and austenite and either contract or expand longitudinally in response to exposure to a first temperature or a second temperature such that the strip of material corresponding to the localized region also contracts or expands. The first member is operatively connected to the belt and moves with the belt in response to the expansion or contraction of the belt. The component is operatively connected to the first member such that movement of the first member drives the component.
Abstract:
A method of achieving a target activation parameter, such as a predetermined response time and/or consistency when thermally activating at least one active material element, such as a shape memory alloy actuator or shape memory polymer hinge, includes deciding whether to prime the element based on energy efficiency and/or overall system costs/performance.
Abstract:
A method to operate a customer-centric portable personal vehicle seat position system includes: generating pressure sensor profiles in response to a user seated on a vehicle seat of a first vehicle having a seat base and a seat back; correlating the pressure sensor profiles to individual user tasks; performing data reduction of the pressure sensor profiles after correlation to the individual user tasks; and encoding. multiple seat comfort preference profiles.