摘要:
The invention relates to a membrane electrode assembly which comprises two gas diffusion layers, each contacted with a catalyst layer, which are separated by a polymer-electrolyte membrane. Said polymer electrolyte membrane has an inner area which is contacted with a catalyst layer, and an outer area which is not provided on the surface of a gas diffusion layer. The inventive assembly is characterized in that the thickness of all components of the outer area is 50 to 100%, based on the thickness of all components of the inner area. The thickness of the outer area decreases over a period of 5 hours by not more than 5% at a temperature of 80° C. and a pressure of 5 N/mm2. The decrease in thickness is determined after a first compression step which takes place over a period of 1 minute at a pressure of 5 N/mm2.
摘要翻译:本发明涉及一种膜电极组件,其包括两个气体扩散层,每个气体扩散层与催化剂层接触,所述催化剂层由聚合物 - 电解质膜分离。 所述聚合物电解质膜具有与催化剂层接触的内部区域和不设置在气体扩散层的表面上的外部区域。 本发明的组件的特征在于,基于内部区域的所有部件的厚度,外部区域的所有部件的厚度为50至100%。 在80℃的温度和5N / mm 2的压力下,外部区域的厚度在5小时内减少不超过5%。 在第一压缩步骤之后,在5N / mm 2的压力下经过1分钟的时间段确定厚度的减小。
摘要:
The invention relates to a membrane-electrode unit comprising a) two electrochemically active electrodes divided by a polymer electrolytic membrane, wherein the surfaces of said polymer electrolytic membrane are in contact with the electrodes in such a way that the first electrode partially or entirely covers the front side of the polymer electrolytic membrane and the second electrode partially or entirely covers the rear side thereof, b) a sealing material is applied to the front and rear sides of the polymer electrolytic membrane, wherein the polymer electrolytic membrane is provided with one or several recesses and the sealing material applied to the front side of the polymer electrolytic membrane is in contact with the sealing material applied to the rear side thereof. A method for producing said membrane-electrode unit and fuel cells provided therewith are also disclosed.
摘要:
A catalyst material comprising an electrically conducting support material, a proton-conducting, acid-doped polymer based on a polyazole salt, and a catalytically active material. A process for preparing the catalyst material. A catalyst material prepared by the process of the invention. A catalyst ink comprising the catalyst material of the invention and a solvent. A catalyst-coated membrane (CCM) comprising a polymer electrolyte membrane and also catalytically active layers comprising a catalyst material of the present invention. A gas diffusion electrode (GDE) comprising a gas diffusion layer and a catalytically active layer comprising a catalyst material of the invention. A membrane-electrode assembly (MEA) comprising a polymer electrolyte membrane, catalytically active layers comprising a catalyst material of the invention, and gas diffusion layers. And a fuel cell comprising a membrane-electrode assembly of the present invention.
摘要:
The present invention relates to a novel proton-conducting polymer membrane based on polyazoles which can, owing to its excellent chemical and thermal properties, be used for a variety of purposes and is particularly suitable as a polymer-electrolyte membrane (PEM) for the production of membrane electrode units for so-called PEM fuel cells.
摘要:
The present invention relates to a novel proton-conducting polymer membrane based on polyazoles which can, owing to its excellent chemical and thermal properties, be used for a variety of purposes and is particularly suitable as a polymer-electrolyte membrane (PEM) for the production of membrane electrode units for so-called PEM fuel cells.
摘要:
The invention relates to a catalyst for electro-chemical applications comprising an alloy of platinum and a transition metal, wherein the transition metal has an absorption edge similar to the absorption edge of the transition metal in oxidic state, measured with x-ray absorption near-edge spectroscopy (XANES) wherein the measurements are performed in concentrated H3PO4 electrolyte. The invention further relates to a process for an oxygen reduction reaction using the catalyst as electrocatalyst.
摘要翻译:本发明涉及一种用于电化学应用的催化剂,其包括铂和过渡金属的合金,其中过渡金属具有与氧化态的过渡金属的吸收边缘相似的吸收边缘, 边缘光谱(XANES),其中测量在浓H 3 PO 4电解质中进行。 本发明还涉及使用该催化剂作为电催化剂的氧还原反应方法。
摘要:
A composition containing a uniformly dispersed polyoxazine-based compound, a method of preparing the composition, an electrode including the composition, and a fuel cell including the electrode.
摘要:
The present invention relates to 5-isopropyl-3-aminomethyl-2-methyl-1-aminocyclohexane (carvonediamine) and to a process for preparation thereof by a) reacting carvone with hydrogen cyanide, b) then reacting the carvonenitrile obtained in stage a) with ammonia in the presence of an imine formation catalyst and c) then reacting the carvonenitrile imine-containing reaction mixture obtained in stage b) with hydrogen and ammonia over hydrogenation catalysts.The present invention further relates to the use of carvonediamine as a hardener for epoxy resins, as an intermediate in the preparation of diisocyanates, as a starter in the preparation of polyetherols and/or as a monomer for polyamide preparation.
摘要:
The present invention relates to an asymmetric polymer film, in particular based on polazoles, a method for the production of the same and its use. The polyazole-based asymmetric polymer film according to the invention has a smooth and a rough side and enables, on account of its asymmetric structure, rapid and homogeneous doping with acids to form a proton-conducting membrane. The polyazole-based asymmetric polymer film according to the invention can be used in diverse ways on account of its excellent chemical, thermal and mechanical properties and is particularly suitable for the production of polymer electrolyte membranes (PEM) for so-called PEM fuel cells.
摘要:
A method for producing a proton-conducting, polyazole-containing membrane, in which A) a composition containing polyphosphoric acid and at least one polyazole and exhibiting a solution viscosity in the range from 10 Pa·s to 1000 Pa·s, measured to DIN 53018 at the temperature at the orifice during production of the membrane, is pressed through an orifice at a temperature in the range from 25° C. to 300° C., and B) the composition is then solidified.