摘要:
A crystallization apparatus includes an illumination optical system to illuminate a phase shift mask and which irradiates an amorphous semiconductor film with a light beam having an intensity distribution of an inverse peak type having a smallest light intensity in a point corresponding to a phase shift portion of the phase shift mask to generate a crystallized semiconductor film. A convergence/divergence element is disposed on a light path between the illumination optical system and phase shift mask. The convergence/divergence element converts the light beam supplied from the illumination optical system into a light beam having an upward concave intensity distribution in which the light intensity is lowest in the phase shift portion and in which the light intensity increases as distant from the phase shift portion to irradiate the phase shift mask.
摘要:
The present invention comprises a light modulation optical system having a first element which forms a desired light intensity gradient distribution to an incident light beam and a second element which forms a desired light intensity minimum distribution with an inverse peak shape to the same, and an image formation optical system which is provided between the light modulation optical system and a substrate having a polycrystal semiconductor film or an amorphous semiconductor film, wherein the incident light beam to which the light intensity gradient distribution and the light intensity minimum distribution are formed is applied to the polycrystal semiconductor film or the amorphous semiconductor film through the image formation optical system, thereby crystallizing a non-crystal semiconductor film. The pattern of the first element is opposed to the pattern of the second element.
摘要:
A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
摘要:
A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
摘要:
A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
摘要:
A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
摘要:
A thin film transistor includes a one conductive type semiconductor layer; a source region and a drain region which are separately provided in the semiconductor layer; and a gate electrode provided above or below the semiconductor layer with an insulating film interposed therebetween, wherein the width of the junction face between the source region and the channel which is provided between the source region and drain region, is different from the width of the junction face between the above channel region and the drain region.
摘要:
A thin film transistor includes a one conductive type semiconductor layer (11); a source region (12) and a drain region (13) which are separately provided in the semiconductor layer; and a gate electrode (14) provided above or below the semiconductor layer with an insulating film interposed therebetween, wherein the width (Ws) of the junction face between the source region and the channel (16) which is provided between the source region and drain region, is different from the width (Wd) of the junction face between the above channel region and the drain region.
摘要:
A thin film transistor includes a one conductive type semiconductor layer; a source region and a drain region which are separately provided in the semiconductor layer; and a gate electrode provided above or below the semiconductor layer with an insulating film interposed therebetween, wherein the width of the junction face between the source region and the channel which is provided between the source region and drain region, is different from the width of the junction face between the above channel region and the drain region.
摘要:
A thin film transistor includes a one conductive type semiconductor layer (11); a source region (12) and a drain region (13) which are separately provided in the semiconductor layer; and a gate electrode (14) provided above or below the semiconductor layer with an insulating film interposed therebetween, wherein the width (Ws) of the junction face between the source region and the channel (16) which is provided between the source region and drain region, is different from the width (Wd) of the junction face between the above channel region and the drain region.