Abstract:
Provided are memory cells, such as resistive random access memory (ReRAM) cells, each cell having multiple metal oxide layers formed from different oxides, and methods of manipulating and fabricating these cells. Two metal oxides used in the same cell have different dielectric constants, such as silicon oxide and hafnium oxide. The memory cell may include electrodes having different metals. Diffusivity of these metals into interfacing metal oxide layers may be different. Specifically, the lower-k oxide may be less prone to diffusion of the metal from the interfacing electrode than the higher-k oxide. The memory cell may be formed to different stable resistive levels and then resistively switched at these levels. Each level may use a different switching power. The switching level may be selected a user after fabrication of the cell and in, some embodiments, may be changed, for example, after switching the cell at a particular level.
Abstract:
Provided are resistive random access memory (ReRAM) cells having switching layers that include hafnium, aluminum, oxygen, and nitrogen. The composition of such layers is designed to achieve desirable performance characteristics, such as low current leakage as well as low and consistent switching currents. In some embodiments, the concentration of nitrogen in a switching layer is between about 1 and 20 atomic percent or, more specifically, between about 2 and 5 atomic percent. Addition of nitrogen helps to control concentration and distribution of defects in the switching layer. Also, nitrogen as well as a combination of two metals helps with maintaining this layer in an amorphous state. Excessive amounts of nitrogen reduce defects in the layer such that switching characteristics may be completely lost. The switching layer may be deposited using various techniques, such as sputtering or atomic layer deposition (ALD).
Abstract:
Filament size and shape in a ReRAM stack can be controlled by doping layers of a variable-resistance stack to change the crystallization temperature. This changes the density of the grain boundaries that form during annealing and provide minimal-resistance paths for the migration of charged defects. Hf, Zr, or Ti decreases the crystallization temperature and narrows the filament, while Si or N increases the crystallization temperature and widens the filament. Tapered filaments are of interest: The narrow tip requires little energy to break and re-form, enabling the cell to operate at low power, yet the wider body and base are insensitive to entropic behavior of small numbers of defects, enabling the cell to retain data for long periods.
Abstract:
A resistive-switching memory (ReRAM cell) has a current-limiting electrode layer that combines the functions of an embedded resistor, an outer electrode, and an intermediate electrode, reducing the thickness of the ReRAM stack and simplifying the fabrication process. The materials include compound nitrides of a transition metal and one of aluminum, boron, or silicon. In experiments with tantalum silicon nitride, peak yield in the desired resistivity range corresponded to ˜24 at % silicon and ˜32 at % nitrogen, believed to optimize the trade-off between inhibiting TaSi2 formation and minimizing nitrogen diffusion. A binary metal nitride may be formed at one or more of the interfaces between the current-limiting electrode and neighboring layers such as metal-oxide switching layers.
Abstract:
A nonvolatile memory device contains a resistive switching memory element with improved device switching performance and life and methods for forming the same. The nonvolatile memory device has a first layer on a substrate, a resistive switching layer on the first layer, and a second layer. The resistive switching layer is disposed between the first layer and the second layer and the resistive switching layer comprises a material having the same morphology as the top surface of the first layer. A method of forming a nonvolatile memory element in a ReRAM device includes forming a resistive switching layer on a first layer and forming a second layer, so that the resistive switching layer is disposed between the first layer and the second layer. The resistive switching layer comprises a material formed with the same morphology as the top surface of the first layer.
Abstract:
Provided are resistive random access memory (ReRAM) cells having extended conductive layers operable as electrodes of other devices, and methods of fabricating such cells and other devices. A conductive layer of a ReRAM cell extends beyond the cell boundary defined by the variable resistance layer. The extended portion may be used a source or drain region of a FET that may control an electrical current through the cell or other devices. The extended conductive layer may be also operable as electrode of another resistive-switching cell or a different device. The extended conductive layer may be formed from doped silicon. The variable resistance layer of the ReRAM cell may be positioned on the same level as a gate dielectric layer of the FET. The variable resistance layer and the gate dielectric layer may have the same thickness and share common materials, though they may be differently doped.
Abstract:
Simultaneous measurement of an internal quantum efficiency and an external quantum efficiency of a solar cell using an emitter that emits light; a three-way beam splitter that splits the light into solar cell light and reference light, wherein the solar cell light strikes the solar cell; a reference detector that detects the reference light; a reflectance detector that detects reflectance light, wherein the reflectance light comprises a portion of the solar cell light reflected off the solar cell; a source meter operatively coupled to the solar cell; a multiplexer operatively coupled to the solar cell, the reference detector, and the reflectance detector; and a computing device that simultaneously computes the internal quantum efficiency and the external quantum efficiency of the solar cell.
Abstract:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. The ReRAM cells may include a first layer operable as a bottom electrode and a second layer operable to switch between a first resistive state and a second resistive state. The ReRAM cells may include a third layer that includes a material having a lower breakdown voltage than the second layer and further includes a conductive path created by electrical breakdown. The third layer may include any of tantalum oxide, titanium oxide, and zirconium oxide. Moreover, the third layer may include a binary nitride or a ternary nitride. The binary nitrides may include any of tantalum, titanium, tungsten, and molybdenum. The ternary nitrides may include silicon or aluminum and any of tantalum, titanium, tungsten, and molybdenum. The ReRAM cells may further include a fourth layer operable as a top electrode.
Abstract:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating them using metal organic chemical vapor deposition (MOCVD). Specifically, MOCVD is used to form an embedded resistor that includes two different nitrides. The first nitride may be more conductive than the second nitride. The concentrations of these nitrides may vary throughout the thickness of the embedded resistor. This variability may be achieved by changing flow rates of MOCVD precursors during formation of the embedded resistor. The second nitride may be concentrated in the middle of the embedded resistor, while the first nitride may be present at interface surfaces of the embedded resistor. As such, the first nitride protects the second nitride from exposure to other components and/or environments and prevents oxidation of the second nitride. Controlling the distribution of the two nitrides within the embedded resistor allows using new materials and achieving consistent performance of the embedded resistor.
Abstract:
Provided are resistive random access memory (ReRAM) cells having Schottky barriers and methods of fabricating such ReRAM cells. Specifically, a ReRAM cell includes two Schottky barriers, one barrier limiting an electrical current through the variable resistance layer in one direction and the other barrier limiting a current in the opposite direction. This combination of the two Schottky barriers provides current compliance during set operations and limits undesirable current overshoots during reset operations. The Schottky barriers' heights are configured to match the resistive switching characteristics of the cell. Conductive layers of the ReRAM cells operable as electrodes may be used to form these Schottky barriers together with semiconductor layers. These semiconductor layers may be different components from a variable resistance layer and, in some embodiments, may be separated by intermediate conductive layers from the variable resistance layers.