Abstract:
A surgical system includes a manipulator, a surgical tool and a control system. The manipulator includes a manipulator mounting base, a pitch mechanism, a roll mechanism and a redundant rotation mechanism. The surgical tool is supported by the manipulator and has a tool shaft axis. The pitch mechanism rotates the surgical tool around a pitch axis. The roll mechanism rotates the surgical tool around a roll axis transverse to the pitch axis. The redundant rotation mechanism rotates the surgical tool around a redundant rotation axis. Each of the tool shaft axis, the pitch axis and the roll axis intersect at a remote center. The control system is configured to electronically communicate with and control operation of the manipulator to articulate the surgical tool during surgery.
Abstract:
A robotic surgery system includes an orienting platform, a support linkage movably supporting the orienting platform, a plurality of surgical instrument manipulators, and a plurality of set-up linkages. Each of the manipulators includes an instrument holder and is operable to rotate the instrument holder around a remote center of manipulation (RC). At least one of the manipulators includes a reorientation mechanism that when actuated moves the attached manipulator through a motion that maintains the associated RC in a fixed position.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
An instrument sterile drape includes a plastic sheet and an instrument sterile adapter (ISA) coupled to the plastic sheet. The ISA includes bottom and top plates located on opposite sides of the plastic sheet plate and joined together. A passage in the bottom plate allows an instrument carriage flux connection to pass through the plastic sheet and the bottom plate to be adjacent to the top plate. The top plate includes a signal transmission area that will be adjacent to an upper surface of the flux connection of the instrument carriage. A flux connector may close an opening in the signal transmission area of the top plate and provide a path for an electrical or optical signal. The signal transmission area of the top plate may be thinned to allow an RFID sensor to be closer to an RFID device in a surgical instrument attached to the instrument sterile adapter.
Abstract:
Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.
Abstract:
An instrument carriage provides control of a surgical instrument coupled to the instrument carriage. The instrument carriage includes a control surface that is coupled to the surgical instrument to provide the control. A detection pin having a first proximal end that extends from the control surface is coupled to the instrument carriage. A magnet is fixed to a distal end of the detection pin. A carriage controller provides an indication that the surgical instrument is coupled to the instrument carriage when movement of the detection pin causes an output signal from a Hall effect sensor to exceed a threshold value that is stored in the carriage controller as part of a calibration procedure during the assembly of the instrument carriage. Surgical instrument removal may be indicated when detection pin movement causes the output signal to be less than an instrument removal threshold value of less than the instrument threshold value.
Abstract:
Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
Abstract:
A robotic assembly is configured to support, insert, retract, and actuate a surgical instrument mounted to the robotic assembly. The robotic assembly includes an instrument holder base member, a motor housing moveably mounted to the instrument holder base member, a carriage drive mechanism operable to translate the motor housing along the instrument holder base member, a plurality of drive motors, a plurality of gear boxes, and a plurality of output drive couplings driven by the gear boxes. The robotic assembly includes a sensor assembly that includes an orientation sensor, a sensor target, and a sensor shaft drivingly coupling the sensor target to a corresponding one of the output drive couplings.
Abstract:
Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
Abstract:
An instrument interface of a robotic manipulator and a surgical system including the instrument interface are provided. In one embodiment, the instrument interface includes a spring-loaded input for providing axial load and torque to a sterile adaptor capable of operably coupling an instrument. In another embodiment, a robotic surgical manipulator system includes a manipulator assembly, including a base link operably coupled to a distal end of a manipulator arm, and a carriage link movably coupled to the base link along a lengthwise axis, the carriage link including an integrated instrument interface. The system further includes an instrument operably coupled to the carriage link via the instrument interface, and a processor operably coupled to the manipulator assembly for sensing presence of the instrument.