Abstract:
A back contact module for a solar cell is provided. The back contact module includes a transparent conductive layer, a plurality of nano-sized scatters in the transparent conductive layer, and a metal layer on the transparent conductive layer.
Abstract:
A method for forming a polysilicon film in a plasma-assisted chemical vapor deposition (CVD) system including a chamber in which a first electrode and a second electrode spaced apart from the first electrode are provided comprises providing a substrate on the second electrode, the substrate including a surface exposed to the first electrode, applying a first power to the first electrode for generating a plasma in the chamber, applying a second power to the second electrode during a nucleation stage of the polysilicon film for ion bombarding the surface of the substrate, and flowing an erosive gas into the chamber.
Abstract:
A memory cell suitable for being disposed over a substrate is provided. The memory cell includes a poly-silicon island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-silicon island is disposed on the substrate and includes a source region, a drain region and a channel region located between the source and drain regions. The channel region has a plurality of regularly arranged tips thereon. The first dielectric layer is disposed on the poly-silicon island. The trapping layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the trapping layer. The control gate is disposed on the second dielectric layer. The memory cell mentioned above can be integrated into the LTPS-LCD panel or OLED panel.
Abstract:
A memory cell suitable for being disposed over a substrate is provided. The memory cell includes a poly-silicon island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-silicon island is disposed on the substrate and includes a source region, a drain region and a channel region located between the source and drain regions. The channel region has a plurality of regularly arranged tips thereon. The first dielectric layer is disposed on the poly-silicon island. The trapping layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the trapping layer. The control gate is disposed on the second dielectric layer. The memory cell mentioned above can be integrated into the LTPS-LCD panel or OLED panel.
Abstract:
A multi-layered complementary conductive line structure, a manufacturing method thereof and a manufacturing method of a TFT (thin film transistor) display array are provided. The process of TFT having multi-layered complementary conductive line structures does not need to increase the mask number in comparison with the currently process and is able to solve the resistance problem of the lines inside a display.
Abstract:
A method for manufacturing a flexible panel is disclosed, which has the following steps. First, a first substrate having a plurality of functional switches or conducting lines thereon is provided. Then, a second substrate is bonded on the functional switches or conducting lines, and the first substrate is thinned to a predetermined thickness subsequently. Afterwards, a flexible third substrate is adhered on the first substrate, wherein the first substrate is sandwiched between the second substrate and the third substrate. Finally, the second substrate is removed.
Abstract:
A memory cell suitable for being disposed over a substrate is provided. The memory cell includes a poly-silicon island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-silicon island is disposed on the substrate and includes a source region, a drain region and a channel region located between the source and drain regions. The channel region has a plurality of regularly arranged tips thereon. The first dielectric layer is disposed on the poly-silicon island. The trapping layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the trapping layer. The control gate is disposed on the second dielectric layer. The memory cell mentioned above can be integrated into the LTPS-LCD panel or OLED panel.
Abstract:
A method of manufacturing a TFT array panel for a LCD disclosers that the gate electrode wiring, transparent conducting electrode, and the first electrode of the storage capacity are formed while the first mask is processing. Then, the selective deposition method is used to process the growth of the first metal wiring. This, therefore, can reduce the numbers of the mask processes. Further, the metal deposition with photo-resist lift-off step is used to implement the layout of the second metal wiring for the consequent transmission lines in the manufacturing process. Finally, the process of the passivation layer deposition is used to implement associated circuits of a TFT array panel for a LCD. The TFT array panel for a LCD for manufacturing circuits can simplify the manufacturing process and reduce the cost.
Abstract:
A multi-layered complementary conductive line structure, a manufacturing method thereof and a manufacturing method of a TFT (thin film transistor) display array are provided. The process of TFT having multi-layered complementary conductive line structures does not need to increase the mask number in comparison with the currently process and is able to solve the resistance problem of the lines inside a display.
Abstract:
A method for manufacturing a flexible panel is disclosed, which has the following steps. First, a first substrate having a plurality of functional switches or conducting lines thereon is provided. Then, a second substrate is bonded on the functional switches or conducting lines, and the first substrate is thinned to a predetermined thickness subsequently. Afterwards, a flexible third substrate is adhered on the first substrate, wherein the first substrate is sandwiched between the second substrate and the third substrate. Finally, the second substrate is removed.