摘要:
A method of fabricating a rugged capacitor structure of high density Dynamic Random Access Memory (DRAM) cells is disclosed. First, MOSFETs, wordlines and bitlines are formed on a semiconductor silicon substrate. Next, a dielectric layer and a doped polysilicon layer are sequentially deposited over the entire silicon substrate. The dielectric layer and doped polysilicon layer are then partially etched to open source contact windows. Then, a polysilicon layer is deposited overlaying the doped polysilicon layer and filling into the source contact windows. Next, the polysilicon layer and doped polysilicon layers are partially etched to define bottom electrodes of the capacitors. Next, tilt angle implantation is performed to implant impurities into top surface and four sidewalls of the polysilicon layer and doped polysilicon layer. Next, a rugged polysilicon layer is deposited overlaying the polysilicon, doped polysilicon and third dielectric layers. Next, the polysilicon layer is anisotropically etched by using the rugged polysilicon layer as an etching mask to transfer rugged surface profile from the rugged polysilicon layer to the polysilicon layer. Finally, an interelectrode dielectric layer and a third polysilicon layer as top electrodes of the capacitors are sequentially formed to complete the rugged capacitor for high density DRAM applications.
摘要:
The electric circuit of a Liquid Crystal Display normally includes a common electrode comprising a material such as indium-tin-oxide that has high resistivity and hence high series resistance. Said series resistance is significantly reduced by the design taught in the present invention wherein an electrically conductive black matrix is located so as to be in contact with the common electrode. Additionally, said design reduces the level of light reflected back in the direction of viewing, thereby improving the contrast level of the display.
摘要:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer.
摘要:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a common electrode layer and a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer. A distance between the common electrode layer and the carbon nanotube touching functional layer is above 100 microns and equal to or less than 2 millimeters.
摘要:
A method for making a patterned conductive element includes following steps. A substrate is provided. A patterned adhesive layer is applied on a surface of the substrate. A carbon nanotube layer is placed on a surface of the patterned adhesive layer. The patterned adhesive layer is solidified to obtain a fixed part of the carbon nanotube layer and a non-fixed part of carbon nanotube layer. The non-fixed part of carbon nanotube layer is removed.
摘要:
An organic light emitting diode is provided. The organic light emitting diode includes a substrate, an electrode structure formed on said substrate, an organic layer formed on said electrode structure and a transparent electrode structure having at least one transparent dielectric layer with a relatively higher refraction index and deposited on said organic layer by thermal evaporation.
摘要:
A TFT array substrate and a process for manufacturing the same are provided. A plurality of TFTs in array are formed on a substrate. A gate insulating layer and a protection layer are sequentially formed to cover a pixel region of the substrate. A plurality of openings each of which has an undercut profile are formed in the gate insulating layer and the protection layer. Then, a transparent conductive layer is formed over the substrate. One of the two parts separated is located in a bottom of the opening and the other is on the protection layer, such that two parts of the transparent conductive layer disconnect and no junction there between occurs. The part of the transparent conductive layer in the bottom of the opening is referred to as a transparent pixel electrode. The part of the transparent conductive layer on the protection layer is connected to a common metal line to form a transparent common electrode. The transparent pixel electrode disconnects to but overlaps the protection layer.
摘要:
A simplified tri-layer process for forming a thin film transistor matrix for a liquid crystal display is disclosed. By forming a pixel electrode layer before a gate metal layer, a remaining portion of the gate metal layer surrounding the pixel electrode can function as a black matrix after properly patterning and etching the gate metal layer. The in-situ black matrix exempts from an additional step of providing a black matrix and solves the problem in alignment.
摘要:
A simplified tri-layer process for forming a thin film transistor matrix for a liquid crystal display is disclosed. By using a backside exposure technique, the masking step for patterning an etch stopper layer can be omitted. After forming an active region including a gate electrode and a scan line on the front side of a substrate, and sequentially applying an etch stopper layer and a photoresist layer over the resulting structure, the backside exposure is performed by exposing from the back side of the substrate. A portion of photoresist is shielded by the active region from exposure so that an etch stopper structure having a shape similar to the shape of the active region is formed without any photo-masking and lithographic procedure. Therefore, the above self-aligned effect allows one masking step to be reduced so as to simplify the process.
摘要:
A method of fabricating a capacitor plate constitutes first providing a substrate. Then, first insulating layer is formed over the substrate. Sequentially, a buffering layer and a second insulating layer, both of which constitute a stacked structure, are formed over the first insulating layer. Next, the stacked structure is patterned into an opening thereby exposing a portion of the first insulating layer therethrough. Subsequently, conducting spacers are formed on the sidewalls of the opening. The second insulating layer is thereafter removed, and simultaneously a portion of the first insulating layer not covered by the buffering layer and the conducting spacers are removed to form a contact window, thereby exposing a portion of the substrate therethrough. Then, a conducting layer is conformably deposited over the substrate, and thereafter etched away until a portion of the buffering layer is exposed. Finally, the exposed buffering layer is removed. The remaining conducting layer and the conducting spacers constitute the capacitor's bottom electrode plate.