Abstract:
A system includes a sensor including a sensor pad and a well wall structure defining a well operatively coupled to the sensor pad. The well is further defined by a lower surface disposed over the sensor pad. The well wall structure defines an upper surface and defines a wall surface extending between the upper surface and the lower surface. The system further includes a conductive layer disposed over the lower surface and the wall surface.
Abstract:
In one implementation, a method for manufacturing a chemical detection device is described. The method includes forming a chemical sensor having a sensing surface. A dielectric material is deposited on the sensing surface. A first etch process is performed to partially etch the dielectric material to define an opening over the sensing surface and leave remaining dielectric material on the sensing surface. An etch protect material is formed on a sidewall of the opening. A second etch process is then performed to selectively etch the remaining dielectric material using the etch protect material as an etch mask, thereby exposing the sensing surface.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.