APPARATUS AND METHODS FOR PERFORMING ELECTROCHEMICAL REACTIONS

    公开(公告)号:US20230101252A1

    公开(公告)日:2023-03-30

    申请号:US18077404

    申请日:2022-12-08

    IPC分类号: G01N27/30 B01L3/00 G01N27/414

    摘要: An apparatus includes a reaction vessels coupled to an electronic sensor for monitoring a reaction product in the reaction vessel; a fluidics system for sequentially delivering a plurality of reagents to the reaction vessel, the fluidics system including a plurality of reagent reservoirs in fluidic communication via a plurality of flow paths with a fluidics circuit and to a common passage in fluidic communication between the fluidics circuit and the reaction vessel, a solution reservoir in fluidic communication with the common passage via a branch passage connected with the common passage at a junction between the fluidics circuit and the reaction vessel; and an electrode in contact with a solution within the branch passage, the electrode being in electrical communication with the reaction vessel through fluid extending from the branch passage and through the common passage, the electronic sensor generating an output signal depending on a voltage of the electrode.

    INTEGRATED SENSOR ARRAYS FOR BIOLOGICAL AND CHEMICAL ANALYSIS

    公开(公告)号:US20160168635A1

    公开(公告)日:2016-06-16

    申请号:US15051084

    申请日:2016-02-23

    IPC分类号: C12Q1/68 G01N27/414

    摘要: The invention is directed to apparatus and chips comprising a large scale chemical field effect transistor arrays that include an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid for analysis. In one aspect such transistor arrays have a pitch of 10 μm or less and each sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region. In one embodiment, the characteristic of said chemical or biological sample is a concentration of a charged species and wherein each of said chemical field effect transistors is an ion-sensitive field effect transistor having a floating gate with a dielectric layer on a surface thereof, the dielectric layer contacting said sample fluid and being capable of accumulating charge in proportion to a concentration of the charged species in said sample fluid. In one embodiment such charged species is a hydrogen ion such that the sensors measure changes in pH of the sample fluid in or adjacent to the sample-retaining region thereof. Apparatus and chips of the invention may be adapted for large scale pH-based DNA sequencing and other bioscience and biomedical applications.

    CHEMICALLY SENSITIVE SENSORS WITH SAMPLE AND HOLD CAPACITORS
    5.
    发明申请
    CHEMICALLY SENSITIVE SENSORS WITH SAMPLE AND HOLD CAPACITORS 有权
    具有样品和保持电容器的化学感应传感器

    公开(公告)号:US20130264611A1

    公开(公告)日:2013-10-10

    申请号:US13922149

    申请日:2013-06-19

    IPC分类号: H01L29/78

    摘要: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.

    摘要翻译: 与用于分析物测量的非常大规模的FET阵列相关的方法和装置。 可以使用基于提高测量灵敏度和精度的改进的FET像素和阵列设计的传统CMOS处理技术来制造ChemFET(例如,ISFET)阵列,并且同时促进显着小的像素尺寸和致密阵列。 改进的阵列控制技术提供了从大型和密集阵列的快速数据采集。 可以使用这样的阵列来检测各种化学和/或生物过程中各种分析物类型的存在和/或浓度变化。 在一个实例中,chemFET阵列基于监测氢离子浓度(pH),其他分析物浓度变化和/或与DNA合成相关的化学过程相关联的结合事件的变化来促进DNA测序技术。

    NUCLEIC ACID AMPLIFICATION
    9.
    发明申请

    公开(公告)号:US20190119738A1

    公开(公告)日:2019-04-25

    申请号:US16168810

    申请日:2018-10-23

    摘要: In some embodiments, provided are methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components. In some embodiments, methods for nucleic acid amplification comprise a amplifying at least one polynucleotide onto a surface under isothermal amplification conditions, optionally in the presence of a polymer. The polymer can include a sieving agent and/or a diffusion-reducing agent.