Abstract:
A wave pipeline includes a data path and a clock path. The data path includes a plurality of wave pipeline data stages and a synchronous data stage. The synchronous data stage includes a first data latch to latch the data from the synchronous data stage. The synchronous data stage is between a first wave pipeline data stage of the plurality of wave pipeline data stages and a second wave pipeline data stage of the plurality of wave pipeline data stages. The clock path corresponds to the plurality of wave pipeline data stages. The first data latch latches the data from the synchronous data stage in response to a clock signal on the clock path.
Abstract:
A wave pipeline includes a data path and a clock path. The data path includes a plurality of wave pipeline data stages and a synchronous data stage between a data input node and a data output node. The synchronous data stage includes a first data latch to latch the data from the synchronous data stage. The clock path includes a plurality of clock stages corresponding to the plurality of wave pipeline data stages between an input clock node and a return clock node. Each clock stage has a delay configured to be equal to a delay of the corresponding wave pipeline data stage. The wave pipeline includes a second data latch to latch the data on the data output node in response to a return clock signal on the return clock node. The first data latch latches the data from the synchronous data stage in response to a clock signal on the clock path.
Abstract:
A system might include a first writing device and a second writing device. The first writing device might write first data to an array of memory cells in response to a first clock cycle of a clock signal. The write of the first data exceeds one clock cycle of the clock signal. The second writing device is in parallel with the first writing device. The second writing device might write second data to the array of memory cells in response to a second clock cycle of the clock signal. The second clock cycle follows the first clock cycle and the write of the second data exceeds one clock cycle of the clock signal.
Abstract:
Several embodiments of electrical circuit devices and systems with clock distortion calibration circuitry are disclosed herein. In one embodiment, an electrical circuit device includes an electrical circuit die having clock distortion calibration circuitry to calibrate a clock signal. The clock distortion calibration circuitry is configured to compare a first duty cycle of a first voltage signal of the clock signal to a second duty cycle of a second voltage signal of the clock signal. Based on the comparison, the clock distortion calibration circuitry is configured to adjust a trim value associated with at least one of the first and the second duty cycles of the first and the second voltage signals, respectively, to calibrate at least one of the first and the second duty cycles and account for duty cycle distortion encountered as the clock signal propagates through a clock tree of the electrical circuit device.
Abstract:
A wave pipeline includes a first stage, a plurality of second stages, and a third stage. The first stage receives a data signal representative of data and a clock signal, and may process the data at a first data rate equal to a clock rate of the clock signal. Each second stage may process respective data in response to a respective clock cycle received from the first stage at a second data rate equal to the first data rate times the number of second stages. The third stage may process data received from each second stage at the first data rate. The first stage divides the data signal and the clock signal between the plurality of second stages. The third stage merges the respective data and the respective clock cycles from each of the plurality of second stages to provide a merged data signal and a return clock signal.
Abstract:
Memory device including a controller configured to cause the memory device to generate a first clock edge of a first clock signal in response to a first clock edge of a second clock signal; to generate a second, opposite, clock edge of the first clock signal immediately following the first clock edge of the first clock signal in response to a second, opposite, clock edge of the second clock signal immediately following the first clock edge of the second clock signal; and to latch data for output from the memory device in response to the second clock edge of the first clock signal.
Abstract:
Memory device including a controller configured to cause the memory device to generate a first clock edge of a first clock signal in response to a first clock edge of a second clock signal; to generate a second, opposite, clock edge of the first clock signal immediately following the first clock edge of the first clock signal in response to a second, opposite, clock edge of the second clock signal immediately following the first clock edge of the second clock signal; and to latch data for output from the memory device in response to the second clock edge of the first clock signal.
Abstract:
Several embodiments of electrical circuit devices and systems with clock distortion calibration circuitry are disclosed herein. In one embodiment, an electrical circuit device includes an electrical circuit die having clock distortion calibration circuitry to calibrate a clock signal. The clock distortion calibration circuitry is configured to compare a first duty cycle of a first voltage signal of the clock signal to a second duty cycle of a second voltage signal of the clock signal. Based on the comparison, the clock calibration circuitry is configured to adjust a trim value associated with at least one of the first and the second duty cycles of the first and the second voltage signals, respectively, to calibrate at least one of the first and the second duty cycles and account for duty cycle distortion encountered as the clock signal propagates through a clock tree of the electrical circuit device.
Abstract:
A system includes a plurality of sensing devices, a first multiplexer, a plurality of local return clock signal paths, a second multiplexer, and a data latch. Each sensing device outputs data onto a respective local data path in response to a clock signal on a clock signal path. The first multiplexor passes data from a selected local data path to a global data path. Each local return clock signal path is coupled to the clock signal path at a respective sensing device such that each local return clock signal path is routed along with a respective local data path. The second multiplexor passes a return clock signal from a selected local return clock signal path corresponding to the selected local data path to a global return clock signal path. The data latch latches the data on the global data path into the data latch in response to the return clock signal on the global return clock signal path.
Abstract:
Apparatuses and methods for reducing capacitance on a data bus are disclosed herein. In accordance with one or more described embodiments, an apparatus may comprise a plurality of memories coupled to an internal data bus and a command and address bus, each of the memories configured to receive a command on the command and address bus. One of the plurality of memories may be coupled to an external data bus. The one of the plurality of memories may be configured to provide program data to the internal data bus when the command comprises a program command and another of the plurality of memories is a target memory of the program command and may be configured to provide read data to the external data bus when the command comprises a read command and the another of the plurality of memories is a target memory of the read command.