摘要:
Each of memory strings is provided with a first semiconductor layer having a pair of columnar portions extending in a perpendicular direction with respect to a substrate; a charge storage layer formed to surround a side surface of the columnar portions; and a first conductive layer formed to surround the charge storage layer. Each of the select transistors is provided with a second semiconductor layer extending upwardly from an upper surface of the columnar portions; a gate insulating layer formed to surround a side surface of the second semiconductor layer; and a second conductive layer formed to surround the gate insulating layer. An effective impurity concentration of the second semiconductor layer is less than or equal to an effective impurity concentration of the first semiconductor layer.
摘要:
A nonvolatile semiconductor memory device comprises: a bit line; a source line; a memory string having a plurality of electrically data-rewritable memory transistors connected in series; a first select transistor provided between one end of the memory string and the bit line; a second select transistor provided between the other end of the memory string and the source line; and a control circuit configured to control a read operation. A plurality of the memory strings connected to one bit line via a plurality of the first select transistors. During reading of data from a selected one of the memory strings, the control circuit renders conductive the first select transistor connected to an unselected one of the memory strings and renders non-conductive the second select transistor connected to unselected one of the memory strings.
摘要:
A laminated body is formed by alternately laminating a plurality of dielectric films and electrode films on a silicon substrate. Next, a through hole extending in the lamination direction is formed in the laminated body. Next, a selective nitridation process is performed to selectively form a charge layer made of silicon nitride in a region of an inner surface of the through hole corresponding to the electrode film. Next, a high-pressure oxidation process is performed to form a block layer made of silicon oxide between the charge layer and the electrode film. Next, a tunnel layer made of silicon oxide is formed on an inner side surface of the through hole. Thus, a flash memory can be manufactured in which the charge layer is split for each electrode film.
摘要:
A nonvolatile semiconductor memory device comprises: a plurality of first memory strings; a first select transistor having one end thereof connected to one end of the first memory strings; a first line commonly connected to the other end of a plurality of the first select transistors; a switch circuit having one end thereof connected to the first line; and a second line commonly connected to the other end of a plurality of the switch circuits. The switch circuit controls electrical connection between the second line and the first line.
摘要:
Each of memory strings comprising: a first semiconductor layer having a pair of columnar portions extending in a vertical direction to a substrate and a joining portion formed to join lower ends of the pair of columnar portions; an electric charge accumulation layer formed to surround a side surface of the first semiconductor layer; and a first conductive layer formed to surround a side surface of the electric charge accumulation layer. The columnar portions are aligned at a first pitch in a first direction orthogonal to the vertical direction, and arranged in a staggered pattern at a second pitch in a second direction orthogonal to the vertical and first directions. The first conductive layers are configured to be arranged at the first pitch in the first direction, and extend to curve in a wave-like fashion in the second direction along the staggered-pattern arrangement.
摘要:
A method for manufacturing a nonvolatile semiconductor storage device, including: forming a first conductive layer so that it is sandwiched in an up-down direction by first insulating layers; forming a first hole so that it penetrates the first insulating layers and the first conductive layer; forming a first side wall insulating layer on a side wall facing the first hole; forming a sacrificing layer so that the sacrificing layer infills the first hole; forming a second conductive layer on an upper layer of the sacrificing layer so that the second conductive layer is sandwiched by the second insulating layer in an up-down direction; forming a second hole on a position which matches with the first hole so that the second hole penetrates the second insulating layer and the second conductive layer; forming a second side wall insulating layer on a side wall facing the second hole; removing the sacrificing layer after the formation of the second side wall insulating layer; and forming a semiconductor layer so that the semiconductor layer infills the first hole and the second hole after the removal of the sacrificing layer.
摘要:
A nonvolatile semiconductor storage device has a plurality of memory strings in which a plurality of electrically rewritable memory cells are connected in series. The memory string has a columnar semiconductor layer extending in a direction perpendicular to a substrate; a conductive layer formed so as to sandwich a charge storing layer in cooperation with the columnar semiconductor layer; and a metal layer formed so as to be in contact with the top face of the conductive layer.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array and a control circuit. The memory cell array includes a stacked body, a through-hole, a semiconductor pillar, and a charge storage film. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. The through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in the through-hole. The charge storage film is provided between the electrode films and the semiconductor pillar. Memory cells are formed at each intersection between the electrode films and the semiconductor pillar. The control circuit writs a first value to at least some of the memory cells, performs an erasing operation of the first value from the memory cell written with the first value, reads data stored in the memory cell having undergone the erasing operation, and sets the memory cell to be unusable in a case that the first value is read from the memory cell.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including electrode films alternately stacked with inter-electrode insulating films; a first and second semiconductor pillars piercing the stacked structural unit; a connection portion semiconductor layer to electrically connect the first and second semiconductor pillars; a connection portion conductive layer opposing the connection portion semiconductor layer; a memory layer, an inner insulating film, and an outer insulating film provided between the first and second semiconductor layers and the electrode films and between the connection portion semiconductor layer and the connection portion conductive layer. At least a portion of a face of the connection portion conductive layer opposing the outer insulating film is a curved surface having a recessed configuration on a side of the outer insulating film.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structure, a semiconductor pillar, a memory layer and an outer insulating film. The stacked structure includes a plurality of electrode films and a plurality of interelectrode insulating films alternately stacked in a first direction. The semiconductor pillar pierces the stacked structure in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The outer insulating film is provided between the electrode films and the memory layer. The device includes a first region and a second region. An outer diameter of the outer insulating film along a second direction perpendicular to the first direction in the first region is larger than that in the second region. A thickness of the outer insulating film along the second direction in the first region is thicker than that in the second region.