Abstract:
A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
Abstract:
A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
Abstract:
There is provided a wideband patch antenna and an antenna array. The antenna includes a dielectric substrate of a rectangle shape, a radiation patch formed on a top surface of the dielectric substrate, a coupling patch formed on the top surface of the dielectric substrate and extending from a side of the dielectric substrate to a position from the radiation patch by a distance, a metal support arranged on the lower surface of the dielectric substrate and extending from the edge of the lower surface of the dielectric substrate downward to the ground, a layer of air having a predetermined thickness being formed between the lower surface of the dielectric substrate and the ground. According to the embodiments, it is possible to improve the directivity of the wideband microstrip antenna while maintaining its small size.
Abstract:
A sampling device and a gas curtain guide are disclosed. In one aspect, the sampling device includes a chamber body. The chamber body includes a sample inlet, located at a first end of the chamber body, configured for suction of a sample. The chamber body further includes a sample outlet, located adjacent to a second end opposite to the first end of the chamber body, configured to discharge the sample. The chamber body further includes a gas inflation inlet, in a wall of the chamber body, configured to introduce a swirl gas flow into the chamber body. The chamber body further includes a gas exhaust opening configured to discharge gas so as to, together with the gas inflation inlet, generate a tornado type gas flow in the chamber body, which moves spirally from the first end to the second end of the chamber body.
Abstract:
A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
Abstract:
The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
Abstract:
A circuit to generate a sweep frequency signal that includes a reference frequency source to generate a reference frequency signal, a first frequency combination circuit coupled to the reference frequency source, and operative to generate a sweep frequency signal in a first frequency band based on the reference frequency signal, a second frequency combination circuit coupled to the reference frequency source, and operative to generate a sweep frequency signal in a second frequency band different from the first frequency band based on the reference frequency signal, a multiple-level switch coupled to outputs of the first frequency combination circuit and the second frequency combination circuit, and a control circuit controlling the first and second frequency combination circuits and the multiple-level switch to output the sweep frequency signal in the first frequency band and the sweep frequency signal in the second frequency band at an output of the multiple-level switch alternately.
Abstract:
The present invention discloses a gas analyzing apparatus and a sampling device. The gas analyzing apparatus includes a sampling device and an ion mobility spectrum analysis device. The sampling device includes a multi-capillary column and a temperature control system. The ion mobility spectrum analysis device is adapted for analyzing a gas leaded-in by the sampling device and includes a reaction cavity for reaction between sample molecules and reaction ions, the cavity having a sampling opening for leading-in of the gas. An outlet end of the multi-capillary column is inserted directly into the cavity of the ion mobility spectrum analysis device through the sampling opening of the ion mobility spectrum analysis device.
Abstract:
The present invention discloses a corona discharge assembly, an ion mobility spectrometer, an computer program and an computer readable storage medium. The corona discharge assembly includes: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and a trumpet-shaped front port which is conductive to forming a gathered electric field; multiple corona pins, in which on-off of a high voltage can be independently controlled, are installed at the center of the metal corona cylinder in an insulating manner. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly. The present invention can be used to prolong the service life of the integral corona discharge assembly; the discharge voltage of the ion source can be reduced and the discharge stability thereof can be improved; in comparison with the suspended installation of a pin-shaped electrode, since the multiple corona pins are fixed on the PCB, during installation, the position of the electrode can be accurate and stable, thus mass manufacture is easier to achieve.
Abstract:
The present invention discloses a corona discharge assembly, including: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and an annular piece-shaped port which forms a non-uniform electric field with corona pins and is provided with a circular hole at the middle; a rotating shaft is installed on the cylinder wall of the metal corona cylinder in an insulating manner, the rotating shaft is vertical to the axial line of the metal corona cylinder, and a turntable provided with multiple corona pins at the outer edge is installed at the end part of the rotating shaft the axial line of the metal corona cylinder passes in parallel through the rotation plane of the turntable. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly.