Abstract:
A pixel array includes a plurality of visible light pixels arranged in the pixel array. Each one of the plurality of visible light pixels includes a photosensitive element arranged in a first semiconductor die to detect visible light. Each one of the plurality of visible light pixels is coupled to provide color image data to visible light readout circuitry disposed in a second semiconductor die stacked with and coupled to the first semiconductor die in a stacked chip scheme. A plurality of infrared (IR) pixels arranged in the pixel array. Each one of the plurality of IR pixels includes a single photon avalanche photodiode (SPAD) arranged in the first semiconductor die to detect IR light. Each one of the plurality of visible light pixels is coupled to provide IR image data to IR light readout circuitry disposed in the second semiconductor die.
Abstract:
An image sensor read out circuit includes a first current mirror circuit in which a second current conducted through a second current path is controlled in response to a first current conducted through the first current path. The second current is conducted through an amplifier transistor of a pixel circuit. A first current source is coupled to the first current path to provide a substantially constant current component of the first current. A second current source is coupled to a power supply rail of the pixel circuit and coupled to the first current path to provide a ripple current component of the first current. The ripple current component provided by the second current source is responsive to a ripple in the power supply rail. The first current is responsive to a sum of the currents from the first and second current sources.
Abstract:
A method of counting photons using a plurality of single photon avalanche diodes (SPADs), including initiating a detection phase, enabling each single photon avalanche diode (SPAD) of the plurality of SPADs for a period of time within the detection phase, accumulating a SPAD event from each SPAD of the plurality of SPADs, wherein each SPAD event corresponds to a detection of a single photon, determining a counter code at an end of the detection phase, where the counter code corresponds to accumulated SPAD events, and enabling one or more SPADs of the plurality of SPADs within an exposure phase based on the counter code, where the counter code is greater than an expected number of the SPAD events during the exposure phase, and where the expected number of SPAD events during the exposure phase is based on the counter code that is determined at the end of the detection phase.
Abstract:
An imaging system comprises a pixel array and readout circuitry coupled to the pixel array. The readout circuitry includes a ramp generator and a plurality of column unit cells, each comprising a column ramp buffer and a column comparator, and each column ramp buffer comprising an input node coupled to receive a ramp signal from the ramp generator, a transistor having a gate terminal coupled to the input node and a drain terminal coupled to a power line, an output node coupled between a source terminal of the transistor and the column comparator, and an alternating current (AC) coupling unit coupled between the input node and the transistor. The AC coupling unit comprises a capacitor coupled between the input node and the gate terminal of the transistor, and a reset switch coupled between the input node and the gate terminal of the transistor.
Abstract:
A local ramp buffer includes a deep N− well layer disposed in a P− substrate beneath a surface of the P− substrate, a P− well disposed between the surface of the P− substrate and the deep N− well layer, and an N− well structure disposed in the P− substrate and coupled to the deep N− well layer. The N− well structure is disposed between the surface of the P− substrate and the deep N− well layer. The P− well is disposed inside an opening in the N− well structure. The N− well structure and the deep N− well layer are configured to isolate the P− well within the opening. A source follower transistor is disposed in the P− well. The source follower transistor includes a gate terminal coupled to the N− well structure and a ramp generator.
Abstract:
An imaging device includes groupings of photodiodes having four photodiodes. A transfer transistor is between each photodiode and a floating diffusion. Each floating diffusion is coupled to up to two photodiodes per grouping at a time through transfer transistors. A buffer transistor is coupled to each floating diffusion. The buffer transistors may be in a first or second grouping of buffer transistors. A first bit line is coupled to up to two buffer transistors of the first grouping and a second bit line is coupled to up to two buffer transistors of the second grouping of buffer transistors at a time. A color filter array including a plurality of groupings of color filters is disposed over respective photodiodes of the photodiode array, wherein each grouping of color filters includes four color filters having a same color, wherein each grouping of color filters overlaps two groupings of photodiodes.
Abstract:
An imaging device includes a photodiode array including a 2×2 grouping of N×N groupings of photodiodes. Each N×N grouping includes N2−1 image sensing photodiodes and a single phase detection autofocus (PDAF) photodiode that is arranged proximate to a center of the 2×2 grouping. A shared floating diffusion is coupled to each photodiode of a respective N×N grouping of photodiodes. An analog to digital converter (ADC) is configured to generate a reference readout in response to charge in the shared floating diffusion after a reset operation. The ADC is next configured to generate a PDAF readout in response to charge transferred from the single PDAF photodiode to the shared floating diffusion. The ADC is then configured to generate a combined readout in response to charge transferred from the image sensing photodiodes combined with the charge transferred previously from the single PDAF photodiode in the shared floating diffusion.
Abstract:
An imaging device includes groupings of photodiodes having four photodiodes. A transfer transistor is between each photodiode and a floating diffusion. Each floating diffusion is coupled to up to two photodiodes per grouping at a time through transfer transistors. A buffer transistor is coupled to each floating diffusion. The buffer transistors may be in a first or second grouping of buffer transistors. A first bit line is coupled to up to two buffer transistors of the first grouping and a second bit line is coupled to up to two buffer transistors of the second grouping of buffer transistors at a time. A color filter array including a plurality of groupings of color filters is disposed over respective photodiodes of the photodiode array, wherein each grouping of color filters includes four color filters having a same color, wherein each grouping of color filters overlaps two groupings of photodiodes.
Abstract:
An image sensing device includes an image sensing circuit, a voltage supply grid, bitlines, and a control circuit. The image sensing circuit includes pixels arranged in rows and columns. Each one of the bitlines is coupled to a corresponding one of the columns. The voltage supply grid is coupled to the pixels. The control circuit is coupled to output at least a row select signal and a transfer signal to the rows. Each one of the rows is selectively coupled to the bitlines to selectively output image data signals in response to the row select signal and the transfer signal. Each one of the rows is further selectively coupled to the bitlines to selectively clamp the bitlines in response to the row select signal and the transfer signal. Each one of the rows is selectively decoupled from the bitlines in response to the row select signal.
Abstract:
A pixel array includes pixel cells disposed in semiconductor material. Each of the pixel cells includes photodiodes, and a floating diffusion to receive image charge from the photodiodes. A source follower is coupled to the floating diffusion to generate an image signal in response image charge from the photodiodes. Drain regions of first and second row select transistors are coupled to a source of the source follower. A common junction is disposed in the semiconductor material between gates of the first and second row select transistors such that the drains of the first and second row select transistors are shared and coupled together through the semiconductor material of the common junction. The pixel cells are organized into a rows and columns with bitlines.