Abstract:
A read amplifier of a memory device has two current generators, an inverter, and five transistors. The inverter is connected to the second current generator. The first transistor has a gate connected to the read amplifier, a drain connected to the first current generator, and a source connected to a reference ground. The second transistor has a gate connected to the first current generator, a drain connected to a reference voltage, and a source connected to the gate of the first transistor. The third transistor has a drain connected to the first current generator and a source connected to the reference ground. The fourth transistor has a gate connected to the first current generator, a drain connected to the second current generator, and a source connected to the reference ground. The fifth transistor has a drain connected to the second current generator and a source connected to the reference voltage.
Abstract:
A memory sense amplifier is configurable on command between a current-sensing mode and a voltage-sensing mode. The sense amplifier is intended, in its current-sensing configuration, to read a datum stored in a memory cell connected to the amplifier, and is intended, in its voltage-sensing configuration, to read a datum stored in a bit-line latch connected to the amplifier.
Abstract:
An integrated structure includes a first MOS transistor with a first controllable gate region overlying a first gate dielectric and a second MOS transistor neighboring the first MOS transistor and having a second controllable gate region overlying the first gate dielectric. A common conductive region overlies the first and second gate regions and is separated therefrom by a second gate dielectric. The common conductive region includes a continuous element located over a portion of the first and second gate regions and a branch extending downward from the continuous element toward the substrate as far as the first gate dielectric. The branch located between the first and second gate regions.
Abstract:
During a phase of programming the cell, a first voltage is applied to the source region and a second voltage, higher than the first voltage, is applied to the drain region until the cell is put into conduction. The numerical value of the item of data to be written is controlled by the level of the control voltage applied to the control gate and the item of data is de facto written with the numerical value during the putting into conduction of the cell. The programming is then stopped.
Abstract:
A memory device includes at least one memory cell having a first SRAM-type elementary memory cell having two inverters coupled to one another crosswise and two groups, each having at least one non-volatile elementary memory cell. The non-volatile elementary memory cells of the two groups are coupled firstly to a supply terminal and secondly to the outputs and to the inputs of the two inverters via a controllable interconnection stage.
Abstract:
An integrated structure includes a first MOS transistor with a first controllable gate region overlying a first gate dielectric and a second MOS transistor neighboring the first MOS transistor and having a second controllable gate region overlying the first gate dielectric. A common conductive region overlies the first and second gate regions and is separated therefrom by a second gate dielectric. The common conductive region includes a continuous element located over a portion of the first and second gate regions and a branch extending downward from the continuous element toward the substrate as far as the first gate dielectric. The branch located between the first and second gate regions.
Abstract:
A method can be used for managing the operation of a memory cell that includes an SRAM elementary memory cell and a non-volatile elementary memory cell coupled to one another. A data bit is transferred between the SRAM elementary memory cell and the non-volatile elementary memory cell. A control datum is stored in a control memory cell that is functionally analogous to and associated with the memory cell. The data bit is read from the SRAM elementary memory cell and a corresponding read of the control datum is performed. The data bit read from the SRAM elementary memory cell is inverted if the control datum has a first value but the data bit read from the SRAM elementary memory cell is not inverted if the control datum has a second value.
Abstract:
A method of manufacturing electronic chips containing low-dispersion components, including the steps of: mapping the average dispersion of said components according to their position in test semiconductor wafers; associating, with each component of each chip, auxiliary correction elements; activating by masking the connection of the correction elements to each component according to the initial mapping.
Abstract:
The present description concerns an electrostatic discharge protection device including a first clipping circuit coupled between a first node and a second node and a second active clipping circuit, series-coupled with a first resistor, the second clipping circuit and the first resistor being coupled between the first and second nodes, the second clipping circuit including a field-effect transistor having a metal-oxide-semiconductor structure.
Abstract:
An integrated circuit comprises a memory device including at least one memory point having a volatile memory cell and a single non-volatile memory cell coupled together to a common node, and a single selection transistor coupled between the common node and a single bit line. A first output of the volatile memory cell is coupled to the common node, and a second output of the volatile memory cell, complementary to the first output, is not connected to any node outside the volatile memory cell.