Abstract:
The method for transmitting and receiving data at a base station in a wireless communication system according to one embodiment of the present invention includes the steps of receiving a performance report from a terminal, determining whether the addition of a serving cell is necessary, when the addition of the serving cell is necessary, transmitting a request for receiving a cell identifying signal to one or more other base stations on the basis of the received performance repotand transmitting a request for transmitting the cell identifying signal to the terminal. According to the embodiment, in a network in which a small cell and a macro cell are overlapped and operated, the terminal can minimize battery consumption and quickly recognize the small cell.
Abstract:
The present disclosure relates to converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method according to disclosed aspects includes receiving a first control message including a first random access response window for a first cell group, receiving a second control message for adding a second cell group, including information on a second random access response window size for the second cell group, transmitting, on a cell of the second cell group, a random access preamble, and monitoring, on the cell of the second cell group, a random access response based on the second random access response window size for the second cell group.
Abstract:
A method and an apparatus for performing random access and uplink transmission of a User Equipment (UE) supporting Carrier Aggregation (CA) are provided. The method includes determining whether a Scheduling Request (SR) is pending, determining, when the SR is pending, whether an uplink transmission resource is available in a current Transmission Time Interval (TTI), determining, when the uplink transmission resource is not available, whether a Physical Uplink Control Channel (PUCCH) resource is configured for transmission of the SR, and initiating, when the PUCCH resource is not configured, a random access process in a primary cell. The random access method and apparatus of the present invention is advantageous to reduce the waste of transmission resources.
Abstract:
The present invention proposes a method for activating secondary carriers in addition to the primary carrier in a wireless communication system supporting carrier aggregation technology. Through the present invention, the UE sorts the operations for activating an SCell into two groups that are executed at different timings, thereby facilitating communication without malfunctioning
Abstract:
To solve the above-mentioned problem, a method in which a terminal reports channel state information comprises the following steps: receiving, plurality from a base station, information on a plurality of patterns to be used in a channel state measurement; receiving, from the base station, selection information for selecting a pattern from among the plurality of patterns that is to be used in the channel state information to be reported to the base station; measuring a channel state using the information on the plurality of patterns; and selecting a portion of the measured channel state based on the selection information, and reporting the selected portion to the base station. The above-described solution enables the efficient reporting of channel state information including CQIICSI, thus improving communication efficiency.
Abstract:
A power headroom calculation method and apparatus of a User Equipment (UE) are provided for a primary cell Power Headroom (PH) calculation in a Long Term Evolution-Advanced (LTE-A) mobile communication system. The method includes determining whether an activated serving cell includes uplink data and/or uplink control signal to be transmitted, and determining PH of the activated serving cell according to whether the activated serving cell has the uplink data and/or uplink control signal.
Abstract:
The present invention involves defining the operation of a terminal for determining which time alignment timer is to be applied to a certain condition when specific time alignment timers operate for each carrier-wave group in the event a wireless communication system uses a carrier aggregation technique. According to the present invention, a terminal may perform communication without malfunctions using a time alignment timer suitable for a certain condition. In detail, a method for a terminal to operate a time alignment timer according to the present invention comprises the steps of: receiving, from a base station, a message including a timing advance command and an index on a timing advance group (TAG); and operating the time alignment timer for the TAG, wherein the index has a value of 00 when the TAG includes a first cell. In the meantime, a method for a terminal to operate a time alignment timer according to the present invention comprises the steps of: operating a first time alignment timer for a first timing advance group (TAG) including a first cell; operating a second time alignment timer upon receipt of a timing advance command for a second TAG that does not include the first cell; and, if the first time alignment timer has expired, deeming the second time alignment timer to also be expired. In addition, a method for a base station to control a time alignment timer according to the present invention comprises the steps of: determining whether or not an uplink timing of a terminal needs correction; and transmitting a message including a timing advance command and an index on a timing advance group (TAG), wherein the index has a value of 00 when the TAG includes a first cell.
Abstract:
A Power Headroom Report (PHR) method and apparatus in a communication system are provided. The method includes acquiring information for a path loss reference, wherein the information for the path loss reference indicates whether the UE applies as the path loss reference either a downlink of a primary cell or a downlink of a secondary cell (SCell), triggering a power headroom report (PHR) if a path loss is changed more than a threshold for at least one activated cell which is used as the path loss reference, and obtaining power headroom information for each activated cell, if extended PHR is used and an uplink resource is allocated for new transmission.
Abstract:
A method and apparatus for configuring Power Headroom Report (PHR) of a User Equipment (UE) efficiently in a mobile communication system supporting carrier aggregation are provided. The method includes generating a header including a LCID for identifying extended PHR and L indicating a length of the extended PHR, and inserting Power Headrooms (PHs) of multiple activated carriers into the extended PHR of one of the carriers.
Abstract:
A method and apparatus for transmitting a power headroom (PH) report by a terminal in a mobile communication system supporting carrier aggregation are provided. The method includes determining a first maximum transmission power for a first serving cell of multiple activated serving cells based on uplink transmission of at least one other serving cell if the first serving cell transmits a physical uplink shared channel (PUSCH), determining a second maximum transmission power for a first serving cell of the multiple activated serving cells without consideration of uplink transmission of at least one other serving cell if the first serving cell does not transmit a PUSCH, calculating a PH for the first serving cell based on the first maximum transmission power or the second maximum transmission power, and transmitting, to a base station, an extended PH report including respective calculated PHs of the multiple activated serving cells on one of the multiple activated serving cells.