Abstract:
The present invention provides a semiconductor device capable of suppressing a body floating effect, and a manufacturing method thereof. A semiconductor device having an SOI structure includes a silicon substrate, a buried insulating layer formed on the silicon substrate, and a semiconductor layer formed on the buried insulating layer. The semiconductor layer has a body region of a first conduction type, a source region of a second conduction type and a drain region of the second conduction type, and a gate electrode is formed on the body region between the source region and the drain region via a gate oxide film. The source region includes an extension layer of the second conduction type, and a silicide layer which makes contact with the extension layer at its side face, and a crystal defect region is formed on a region of a depletion layer generated in a boundary portion between the silicide layer and the body region.
Abstract:
The present invention realizes the miniaturization of a semiconductor device. On a first insulation film, an island-like semiconductor layer and a second insulation film which surrounds the semiconductor layer are formed, and resistance elements (for example, poly-silicon resistance elements) which are formed of a conductive film are arranged to be overlapped to an upper surface of the semiconductor layer in plane.
Abstract:
A plurality of conductive layers and a plurality of wiring layers connecting a supporting substrate having SOI structure and uppermost wire are formed along a peripheral part of a semiconductor chip together with the uppermost wire, to thereby surround a transistor forming region in which a transistor is to be formed.
Abstract:
A contact connected to a word line is formed on a gate electrode of an access transistor of an SRAM cell. The contact passes through an element isolation insulating film to reach an SOI layer. A body region of a driver transistor and that of the access transistor are electrically connected with each other through the SOI layer located under the element isolation insulating film. Therefore, the access transistor is in a DTMOS structure having the gate electrode connected with the body region through the contact, which in turn is also electrically connected to the body region of the driver transistor. Thus, operations can be stabilized while suppressing increase of an area for forming the SRAM cell.
Abstract:
A plurality of conductive layers and a plurality of wiring layers connecting a supporting substrate having SOI structure and uppermost wire are formed along a peripheral part of a semiconductor chip together with the uppermost wire, to thereby surround a transistor forming region in which a transistor is to be formed.
Abstract:
Formed on an insulator are an N− type semiconductor layer having a partial isolator formed on its surface and a P− type semiconductor layer having a partial isolator formed on its surface. Source/drain being P+ type semiconductor layers are provided on the semiconductor layer to form a PMOS transistor. Source/drain being N+ type semiconductor layers are provided on the semiconductor layer to form an NMOS transistor. A pn junction formed by the semiconductor layers is provided in a CMOS transistor made up of the transistors. The pn junction is positioned separately from the partial isolators where the crystal defect is thus very small. Therefore, the leakage current is very low at the pn junction.
Abstract:
Plural trench isolation films are provided with portions of an SOI layer interposed therebetween in a surface of the SOI layer in a resistor region (RR) where a spiral inductor (SI) is to be provided. Resistive element are formed on the trench isolation films, respectively. Each of the trench isolation films includes a central portion which passes through the SOI layer and reaches a buried oxide film to include a full-trench isolation structure, and opposite side portions each of which passes through only a portion of the SOI layer and is located on the SOI layer to include a partial-trench isolation structure. Thus, each of the trench isolation films includes a hybrid-trench isolation structure.
Abstract:
Formed on an insulator (9) are an N− type semiconductor layer (10) having a partial isolator formed on its surface and a P− type semiconductor layer (20) having a partial isolator formed on its surface. Source/drain (11, 12) being P+ type semiconductor layers are provided on the semiconductor layer (10) to form a PMOS transistor (1). Source/drain (21, 22) being N+ type semiconductor layers are provided on the semiconductor layer (20) to form an NMOS transistor (2). A pn junction (J5) formed by the semiconductor layers (10, 20) is provided in a CMOS transistor (100) made up of the transistors (1, 2). The pn junction (J5) is positioned separately from the partial isolators (41, 42), where the crystal defect is thus very small. Therefore, the leakage current is very low at the pn junction (J5).
Abstract:
A contact connected to a word line is formed on a gate electrode of an access transistor of an SRAM cell. The contact passes through an element isolation insulating film to reach an SOI layer. A body region of a driver transistor and that of the access transistor are electrically connected with each other through the SOI layer located under the element isolation insulating film. Therefore, the access transistor is in a DTMOS structure having the gate electrode connected with the body region through the contact, which in turn is also electrically connected to the body region of the driver transistor. Thus, operations can be stabilized while suppressing increase of an area for forming the SRAM cell.
Abstract:
A partial isolation insulating film provided between MOS transistors in an NMOS region and a PMOS region, respectively, has a structure in which a portion protruding upward from a main surface of an SOI layer is of greater thickness than a trench depth, namely, a portion (isolation portion) extending below the surface of the SOI layer, and the SOI layer under the partial isolation insulating film is of greater thickness than the isolation portion.