摘要:
A method for making multilayer optical films is provided in which the degradation of the optical extinction of the thinnest optical layers is avoided by casting these layers close to the casting wheel.
摘要:
A method of forming an optical film results in a film having a useful central 60% portion with a caliper variation of about 5% or less of an average thickness of the film. The method includes selecting a draw ratio λ in a first in-plane stretch direction, setting an effective draw gap defined by a length L and a width W, and stretching a polymer film at the draw ratio and effective draw gap. The effective draw gap is set such that the stretching step fits into one of two regimes, the first regime referred to as a uniaxial regime and characterized by a β equal to or less than about 1.0; and the second regime referred to as a planar extension regime and characterized by a β equal to or greater than about 10.0. The disclosure also describes an optical film formed by the method.
摘要:
A method of forming an optical film includes stretching a polymer film in first draw gap of a first length along a machine direction, at a first draw ratio; and further stretching the polymer film in second draw gap along a machine direction, wherein the step of stretching in the first draw gap is isolated from the step of stretching in the second draw gap.
摘要:
Stretched polymeric films can be used in a variety of applications, including optical applications. The stretching conditions and shape of the stretching tracks in a stretching apparatus can determine or influence film properties. Methods and stretching apparatuses can include adjustable or zone-defined stretching regions.
摘要:
Stretched polymeric films can be used in a variety of applications, including optical applications. The stretching conditions and shape of the stretching tracks in a stretching apparatus can determine or influence film properties. Methods and stretching apparatuses can include adjustable or zone-defined stretching regions.
摘要:
Multilayer polymeric films and other optical bodies are provided. The films, which have at least three layers of different composition in the optical repeating unit, reflect light in a first portion of the spectrum while transmitting light in a second portion of the spectrum, exhibit improved reflectivities at oblique angles, and can be designed to suppress one or more higher order harmonics of the main reflection band.
摘要:
Multilayer polymeric films and other optical bodies are provided which is useful in making colored mirrors and polarizers. The films are characterized by a highly uniform change in color as a function of viewing angle.
摘要:
A method of biaxially stretching a polymeric film along an overbias stretch profile having the steps of (a) imparting a sufficiently high temperature to the film to allow a significant amount of biaxial stretch; and (b) biaxial tenter stretching the film to a final first direction stretch parameter and a final second direction stretch parameter, wherein at least 75% of the final first direction stretch parameter is attained before no more than 50% of the final second direction stretch parameter is attained, and wherein the final first direction stretch parameter is no greater than the final second direction stretch parameter.
摘要:
A dispersing element for a rear projection screen assembly is sensitive to the polarization of the light passing through the element. In particular, the element disperses light having a first polarization differently from light having a second polarization orthogonal to the first polarization. The dispersing element may be aligned with a polarization axis neither parallel nor perpendicular to the polarization of the light passing through the element. The dispersing element may also be employed with a polarizer to remove unwanted light that propagates through the dispersing element. The dispersing element may also be rotatably mounted relative to a polarized light source so as to vary the angle between the polarization axis of the element and the polarization direction of the light.