Abstract:
A chip-scale packaged IC is made by bonding one or more singulated die chips (from an IC wafer) to a common substrate, such as a single cap wafer (or a portion thereof) and cutting (singulating) the substrate to yield individual, chip-scale packaged ICs. Alternatively, each die chip is bonded to an individual, pre-cut cap. Electrically conductive paths extend through the cap wafer, between wafer contact pads on the surface of the cap and electrical contact points on the IC wafer. Optionally, the cap wafer contains one or more die. The IC wafer can be fabricated according to a different technology than the cap wafer, thereby forming a hybrid chip-scale packaged IC. Optionally, additional “upper-level” cap wafers (with or without die) can be stacked to form a “multi-story” IC.
Abstract:
A collimator includes a pair of first plate members which define an X-ray passing aperture by a spacing between their opposed end faces, a second plate member which is movable in a direction parallel to a moving direction of the first plate members, a pair of third plate members which are movable symmetrically with each other in a direction perpendicular to the moving direction of the first plate member and which define an X-ray passing aperture by a spacing between their opposed end faces, and a fourth plate member which is movable in a direction parallel to the moving direction of the third plate members.
Abstract:
A micromachined magnetometer is built from a rotatable micromachined structure on which is deposited a ferromagnetic material magnetized along an axis parallel to the substrate. A structure rotatable about the Z-axis can be used to detect external magnetic fields along the X-axis or the Y-axis, depending on the orientation of the magnetic moment of the ferromagnetic material. A structure rotatable about the X-axis or the Y-axis can be used to detect external magnetic fields along the Z-axis. By combining two or three of these structures, a dual-axis or three-axis magnetometer is obtained.
Abstract:
A circuit for minimizing electrostatic forces in capacitance-based sensor circuits. A sensor includes a movable mass that forms the center electrode of two differential capacitors, a sensing differential capacitor and an actuator differential capacitor. The other two electrodes of each differential capacitor are fixed. Oppositely phased high-frequency carrier signals are applied to the fixed electrodes of the sensing capacitor and biasing signals are applied to the fixed electrodes of the actuator capacitor. When a force is applied to the sensor, the capacitance of the sensing capacitor changes and the carrier signal, with its amplitude and phase modulated in accordance with the magnitude and direction of the force, appears on the movable mass. The signal on the mass is fed back to the fixed electrodes of the sensing capacitor to minimize electrostatic forces between the electrodes of the sensing capacitor. Using a separate negative feedback loop, a signal is fed back to the mass to generate electrostatic forces between the mass and the fixed electrodes of the actuator capacitor to restore the mass to its original position.
Abstract:
A moveable body, cladding medium, and fiber are arranged to form a sensor suitable for use in monitoring changes in liquid, fluid, and material level and changes in pressure. The moveable body moves in response to changes in pressure or force. Movement of the body causes a change in the length of cladding medium surrounding an optical fiber. As the extent of cladded fiber length changes, the intensity of light transmitted through the fiber also changes.
Abstract:
An apparatus includes a housing, a crucible disposed in the housing, and a collection bin. A turnplate disposed in a powder collection area is of an inlaid structure. A concentric circular groove is provided on the atomization plane. An air hole is provided in the turnplate. The present invention combines the pulsated orifice ejection method and the centrifugal atomization method, in cooperation with the turnplate structure and subjecting the turnplate surface to induction heating, so that a metal liquid is allowed to break through the split mode of traditional molten metal, achieves a fibrous split mode that can be implemented only when an atomizing medium is an aqueous or organic solution, and prepares a high-melting-point metal powder that meets requirements, and has a controllable particle size, high sphericity, no satellite droplets, and good flowability and spreadability, and is suitable for industrial production.
Abstract:
An apparatus efficiently preparing ultrafine spherical metal powder includes a housing, a crucible and a powder collection area arranged in the housing. The turnplate arranged in the powder collection area is an inlaid structure. The part inlaid into the body part acts as an atomization plane of the turnplate. The atomization plane is provided with a concentric circular groove, and the turnplate is provided with an air hole. The apparatus is used for preparing ultrafine spherical metal powder by on-by-one droplets centrifugal atomization method, mainly combining the uniform droplet jet method and the centrifugal atomization method, which breaks through the traditional metal splitting model, makes the molten metal in a fibrous splitting, so as to efficiently prepare ultrafine spherical metal powder with narrow particle size distribution interval, high sphericity, good flowability, excellent spreadability, uniform and controllable size, no satellite droplets and suitable for industrial production.
Abstract:
A plasma oil-free ignition system in oxygen enriched environment comprises a plasma generator and a burner. The plasma oil-free ignition system comprises a sleeve group coaxially arranged with the burner, and the sleeve group comprises multiple coaxially sleeved sleeves. Annular spaces are formed between adjacent sleeves and between the sleeves and the burner. Oxygen ducts are arranged on the sleeves, and oxygen ducts are arranged on the burner. Plasmas jetted by the plasma generators form a local high temperature zone filled with high temperature plasma and pulverized coal air flow. A certain amount of oxygen is fed to the burner through the oxygen duct therein to form local oxygen enriched zones in the annular spaces and the subsequent adjacent spaces through which air flows, thus realizing oxygen enriched combustion of volatile matters or coke or mixture thereof, and combustion the pulverized coal air flow more intensely to release more heat so as to ignite the primary air pulverized coal air flow quickly and burn the pulverized coal air flow stably. The invention has simple structure, is applicable to different coal types, especially applicable to the plasma oil-free ignition system in oxygen enriched environment of coal types with low volatile matters.
Abstract:
Embodiments of the present invention provide an image processing method and device, relating to the field of communications technology. The method includes: receiving at least two channels of images transmitted from a remote conference site; if there is a blind area in splicing of the at least two channels of images, comparing the width of the blind area with the sum of the widths of a left border and a right border of a display apparatus in a local conference site; processing the at least two channels of images separately according to a comparison result; outputting the at least two channels of processed images separately to the display apparatuses in the local conference site for displaying. In the embodiments of the present invention, the optimal image display effect may be achieved and the user experience in a telepresence video conference may be improved.
Abstract:
Embodiments of the present invention relate to a method for activating virtual machines in a virtual solution, including: for each virtual machine, activating activation items in a first activation item set independently of other virtual machines; and for at least one virtual machine, activating activation items in a second activation item set in coordination with activation of activation items of at least another virtual machine. There is further provided an apparatus for activating virtual machines in a virtual solution, including: a first activator for activating, for each virtual machine, activation items in a first activation item set independently of other virtual machines; and a second activator for activating, for at least one virtual machine, activation items in a second activation item set in coordination with activation of activation items of at least another virtual machine.