Abstract:
The present invention relates to a connector system for resiliently attaching and electrically connecting an integrated circuit chip to a circuit board using a plurality of leads. Each of the plurality of leads are sized and arranged to form a curved body having a first leg and a second leg with a curved portion between the first leg and the second leg. The curved body of the leads may be C-shaped in accordance with the present invention. The plurality of leads may be formed from strips of copper foil or copper mesh folded to form the curved body. The plurality of leads may also be sized and arranged to support the integrated circuit chip in a generally flat arrangement relative to the circuit board with a maximum separation of about 0.016 inches or less between the integrated circuit chip and the circuit board.
Abstract:
A method of determining a distance to an object is presented. A first photon and a second photon are simultaneously generated. The first photon is reflected off an object. The second photon is directed to an optical cavity. An arrival of the first photon is correlated with an arrival of the second photon, and the distance to the object is at least partially determined using the correlation.
Abstract:
The invention pertains generally to image processing. More specifically, the invention relates to the processing of sensor imagery using generated imagery. Embodiments of the invention include receiving sensor data, vehicle data, GPS data and accessing a database to obtain a pre-stored image of a target area. The pre-stored image of the target area may then be pre-processed by transforming the image into a warped coordinate system and adding visual effects to create projection image of the target area. The projection image may then be compared to a current image of the target area to determine a three-dimensional location of a target located in the target area. Additional embodiments of the invention include the use of a feedback loop for refinement and correction of results and/or the use of parallel processors to speed processing.
Abstract:
A method according to a first aspect may include performing a first analog-to-digital (A/D) conversion using an A/D converter. Data associated with this first A/D conversion may be read using a processor. A command may then be issued from a processor when the reading of the data has started. This command may instruct the A/D converter to perform a second A/D conversion. This data may then be stored in a data structure located within a memory device while the A/D converter is performing the second A/D conversion. In addition to performing such pipelined A/D conversions, the present invention may include a system, method and software for filtering out noise in a voltage measurement after the voltage measurement has been converted to a digital signal by omitting the highest and lowest voltage values and averaging the remainder of the voltage values, thereby reducing noise in the voltage measurements.
Abstract:
A fast, accurate and reliable sensor applicable to chemical and biological analytes resides in an optical grating-based sensor, sensing system, and method of use. The sensor, configured for use with an illumination source and a signal detector in the system embodiment, includes first and second periodic diffraction gratings superimposed and shifted laterally relative to each other by a distance of less than one period, such that the illumination from the source is affected by both gratings before reaching the detector. An analyte recognition material disposed on a surface of the second diffraction grating. In operation, the output of the detector is first used to establish a baseline optical phase signal. The analyte recognition material is exposed to a sample, and the output of the detector is used to to determine a second optical phase signal. The baseline optical phase signal is compared to the second optical phase signal to detect the presence of the analyte, if any, in the sample. The analyte recognition material may be an antibody, nucleic acid, lectin or other substance. The sample may obtained from a mammal, including a human, plant, or the environment.
Abstract:
A system and method are presented for determining the detection and location of persons and objects using ultrasonic acoustic sensors. The system allows detection of stationary and moving persons and other objects, through atmospheric conditions, to a distance of at least 300 feet. The invention further provides for enhanced signal processing through the use of arrays of transmitters and receivers, where one or more transmitter arrays may be oriented substantially perpendicularly to one or more receiver arrays, allowing high directionality and good rejection of reverberations, background noise, clutter and objects not of interest.
Abstract:
A bi-static continuous wave radar system and related methods for detecting incoming threats from ballistic projectiles includes a remote source of RF illumination, and a local receiver installed in one or more target aircraft. A first receiving channel acquires direct path illumination from the source and provides a reference signal, and a second receiving channel acquires a scatter signal reflected by a projectile. A processor coupled to each receiver corrects scatter signal Doppler offset induced by relative source motion, isolates narrowband Doppler signals to derive signatures characteristic of the projectile, and by executing appropriate algorithms, compares the derived signatures to modeled signatures stored in memory. If the comparison yields a substantial similarity, the processor outputs a warning signal sufficient to initiate defensive countermeasures.
Abstract:
Methods and apparatuses for maneuvering through a medium such as soil are disclosed. One such apparatus has a generally longitudinal body that can impel itself through the medium. This apparatus also has at least two independently-controllable packers arranged radially on its body to compress and grip the medium in order to provide forward, backward, and directional impulsion.
Abstract:
Techniques are used to determine when interfering beams of light are precisely aligned at the core of the fiber when a laser interferometer is used to burn diffraction gratings into optical fibers. Two alternative methods are disclosed for performing this function, namely, refraction of the UV fluorescence through the fiber onto a paper or screen, and alternately interrupting the left and right UV beams, then directly observing the fluorescence pattern of the UV beam on the fiber core to determine alignment.
Abstract:
The present invention is directed to an optical grating sensor configured to detect a phase change in light passing though the system due to a binding event caused by an analyte. The grating sensor may include a light source that may be, for example, a coherent light source. The invention may also include a first diffraction grating having a first period. A micro-electrical mechanical system (MEMS) may be displaced from the first diffraction grating and may be configured to modulate the light received form the coherent light source. An analyte recognition material may be disposed on the surface of the first grating. A detector may be configured to receive light form the coherent light source after the light has been diffracted from the first diffraction grating and modulated by the MEMS. In another embodiment of the present invention, the grating sensor may be configured to operate in two modes. The first mode may be a mode the detect a phase change in the light due to a binding event. The second mode may include the detection of fluorescence due to a binding event and may employ tagging of the analytes.