Abstract:
A composition of matter, in particular a photovoltaic cell, comprising: at least one core semiconductor nanowire on a graphitic substrate, said at least one core nanowire having been grown epitaxially on said substrate wherein said nanowire comprises at least one group III-V compound or at least one group II-VI compound or at least one group IV element; a semiconductor shell surrounding said core nanowire, said shell comprising at least one group III-V compound or at least one group II-VI compound or at least one group IV element such that said core nanowire and said shell form a n-type semiconductor and a p-type semiconductor respectively or vice versa; and an outer conducting coating surrounding said shell which forms an electrode contact.
Abstract:
A method of calibrating an instrument for surgical intervention is provided. The instrument to be calibrated has a tip at a distal end thereof and a navigation array that is spaced from the distal end and is detectable in space. The navigation array has a fixed spatial and angular relationship with the tip. The method comprises the steps of: placing a calibrator on the tip of the instrument such that the tip is positioned within the calibrator at a known displacement from the centre of the calibrator, the calibrator having a circular shape and being detectable as a single point in space; detecting the position of the navigation array and the centre of the calibrator; and determining the position of the centre of the calibrator relative to the navigation array, thereby calibrating the position of the tip of the instrument relative to the navigation array. There is also provided a calibrator for use in such a method.
Abstract:
A composition of matter comprising at least one nanowire on a graphitic substrate, said at least one nanowire having been grown epitaxially on said substrate, wherein said nanowire comprises at least one group III-V compound or at least one group II-VI compound or comprises at least one non carbon group (IV) element.
Abstract:
The present invention provides an agent, or composition containing an agent, for use in treating or preventing hypercytokinemia in a subject resulting from cytokine release from non-proliferating immune cells in blood, wherein the agent comprises: (i) an oligopeptidic compound comprising a PCNA interacting motif and a domain that facilitates the cellular uptake of said compound, wherein the PCNA interacting motif is X1X2X3X4X5 (SEQ ID NO: 1) and wherein: X1 is a basic amino acid; X2 is an aromatic amino acid; X3 is an uncharged amino acid other than an aromatic amino acid, Glycine (G) and Proline (P); X4 is any amino acid other than Proline (P), an acidic amino acid or an aromatic amino acid; and X5 is a basic amino acid or Proline (P); or (ii) a nucleic acid molecule comprising a sequence encoding the oligopeptidic compound of (i). In certain aspects the agent and compositions of the invention may be used as single agents. In other aspects of the invention agents and compositions of the invention may be used in conjunction with one or more additional active agents, such as kinase inhibitors.
Abstract:
The present invention provides an agent, or a composition containing an agent, for use in treating or preventing a bacterial infection in a subject, wherein said agent comprises: (i) an oligopeptidic compound comprising a PCNA interacting motif and a domain that facilitates the cellular uptake of said compound, wherein the PCNA interacting motif is X1X2X3X4X5 (SEQ ID NO: 1) and wherein: X1 is a basic amino acid; X2 is an aromatic amino acid; X3 is an uncharged amino acid other than an aromatic amino acid, Glycine (G) and Proline (P); X4 is any amino acid other than Proline (P), an acidic amino acid or an aromatic amino acid; and X5 is a basic amino acid or Proline (P); or (ii) a nucleic acid molecule comprising a sequence encoding the oligopeptidic compound of (i). In certain aspects the agent and compositions of the invention may be used as single agents. In other aspects of the invention agents and compositions of the invention may be used in conjunction with one or more additional active agents, such as antibiotics.
Abstract:
A composition of matter comprising at least one nanowire on a graphitic substrate, said at least one nanowire having been grown epitaxially on said substrate, wherein said nanowire comprises at least one group III-V compound or at least one group II-VI compound or comprises at least one non carbon group (IV) element.
Abstract:
A membrane suitable for separating a gas from a gas mixture comprising a non cross-linked PVAm having a molecular weight of at least Mw 100,000 carried on a support wherein after casting onto the support, said PVAm has been heated to a temperature in the range 50 to 150° C., e.g. 80 to 120° C.
Abstract:
A neuroinhibitory substance for use in a method for treating or preventing headache comprising injecting a neuroinhibitory substance such as botulinium toxin in close proximity to the sphenopalatine ganglion or otic ganglion wherein an injection device comprising said neuroinhibitory substance is brought into close proximity to the sphenopalatine ganglion or otic ganglion by inserting said injection device into the patient transnasally or infrazygomatically and the neuroinhibitory substance injected in close proximity to the SPG or OG.
Abstract:
A process for the formation of an ionic gel comprising contacting a first polyelectrolyte reactant having a backbone comprising a plurality of β-1,4-glycosidic linkages in the 4C1 conformation and an oligoelectrolyte reactant or second polyelectrolyte reactant, having a backbone containing a plurality of β-1,4-glycosidic linkages in the 4C1 conformation, in aqueous solution under pH conditions such that one reactant is charged and the other uncharged; adding a donor to adjust the pH such that said uncharged reactant possesses a charge opposite to that of the charged reactant so as to form an ionic gel.
Abstract:
A composition of matter comprising at least one nanowire on a graphitic substrate, said at least one nanowire having been grown epitaxially on said substrate, wherein said nanowire comprises at least one group III-V compound or at least one group II-VI compound or comprises at least one non carbon group (IV) element.