Abstract:
A method for folding a fastener during a high speed manufacturing process and maintaining the fastener in a folded configuration throughout the high speed manufacturing process. The method includes obtaining an article that has a foldable fastener and moving the article in the machine direction during the high speed manufacturing process. The foldable fastener has first and second opposing surfaces, a web and at least one engaging member joined to the web. The method includes applying a frangible bonding agent to a first portion of the first surface of the fastening system; folding the fastening system such that the frangible bonding agent contacts a second portion of the first surface of the fastening system; and allowing the frangible bonding agent to cool at a temperature of less than 60° C.
Abstract:
A band pressing device in an edge banding machine including a glue applying roller includes first and second resilient members. The first resilient member has a first resilient section spaced apart from the glue applying roller at a first distance. The first resilient section generates a first biasing force pressing an edge band against the glue applying roller when the edge band has a thickness larger than the first distance. The second resilient member has a second resilient section spaced apart from the first resilient section at a second distance. The second resilient section generates a second biasing force pressing the first resilient section against the edge band when the first resilient section is deformed to deform the second resilient section.
Abstract:
In one or more aspects of the present disclosure, a mandrel is disclosed. The mandrel having a shape memory alloy (SMA) shell having a longitudinal axis, an interior extending along the longitudinal axis and an exterior contour, the SMA shell being configured to interface with a structure to be cured, and at least one SMA actuation member disposed within the interior and connected to the SMA shell, where the at least one SMA actuation member is configured to exert pressure against the SMA shell effecting an interface pressure between the exterior contour of the SMA shell and the structure to be cured where the exterior contour has a predetermined actuated shape that corresponds to a predetermined cured shape of the structure to be cured.
Abstract:
A method for folding a fastener during a high speed manufacturing process and maintaining the fastener in a folded configuration throughout the high speed manufacturing process. The method includes obtaining an article that has a foldable fastener and moving the article in the machine direction during the high speed manufacturing process. The foldable fastener has first and second opposing surfaces, a web and at least one engaging member joined to the web. The method includes applying a frangible bonding agent to a first portion of the first surface of the fastening system; folding the fastening system such that the frangible bonding agent contacts a second portion of the first surface of the fastening system; and allowing the frangible bonding agent to cool at a temperature of less than 60° C.
Abstract:
A method for folding a fastener during a high speed manufacturing process and maintaining the fastener in a folded configuration throughout the high speed manufacturing process. The method includes obtaining an article that has a foldable fastener and moving the article in the machine direction during the high speed manufacturing process. The foldable fastener has first and second opposing surfaces, a web and at least one engaging member joined to the web. The method includes applying a frangible bonding agent to a first portion of the first surface of the fastening system; folding the fastening system such that the frangible bonding agent contacts a second portion of the first surface of the fastening system; and allowing the frangible bonding agent to cool at a temperature of less than 60° C.
Abstract:
Disclosed herein is a lamination apparatus including: a mechanism configured to transport a belt-like flexible substrate including a transfer layer and a supporting layer layered on each other; a mechanism configured to transport a sheet-like rigid substrate; a mechanism configured to coat adhesive to the transfer layer while transporting the belt-like flexible substrate; a mechanism configured to cut the transfer layer having the adhesive coated thereon into a sheet while transporting the belt-like flexible substrate; and a mechanism configured to laminate the transfer layer cut out into the sheet to the rigid substrate through the adhesive while transporting the belt-like flexible substrate and the sheet-like rigid substrate.
Abstract:
There is provided a device for bonding ceramic structural bodies. In the state in which a set of ceramic structural bodies provided with a bonding agent between bonding surfaces and provided with elastic sleeves disposed on a peripheral surface of the set of the structural bodies are placed in a tubular container with an elastic sheet disposed between the elastic sleeves and the tubular container, the device is able to charge a hydrostatic pressure medium between the tubular container and the elastic sheet to press and bond the structural bodies. By bonding the ceramic structural bodies with the device, it may provide accurate positioning of the bonding surfaces. It may also provide a uniform distance between bonded surfaces, and reduce the number of bonding operations, thereby affording an excellent working efficiency.
Abstract:
A method for folding a fastener during a high speed manufacturing process and maintaining the fastener in a folded configuration throughout the high speed manufacturing process. The method includes obtaining an article that has a foldable fastener and moving the article in the machine direction during the high speed manufacturing process. The foldable fastener has first and second opposing surfaces, a web and at least one engaging member joined to the web. The method includes applying a frangible bonding agent to a first portion of the first surface of the fastening system; folding the fastening system such that the frangible bonding agent contacts a second portion of the first surface of the fastening system; and allowing the frangible bonding agent to cool at a temperature of less than 60° C.
Abstract:
A laminating machine and a method for the production of laminated polyethylene foam sheets is described. The machine comprises a conveyor belt having at least two laminating assemblies disposed in spaced-apart relationship therealong. Each laminating assembly has a hot air diffuser for dispensing an elongated ribbon of hot air across the conveyor belt and a press roll which is spaced behind the hot air diffuse. A sheet laminating slot is defined between the diffuse and the press roll. The top surface of a lower polyethylene foam sheet passing under the laminating assembly and the bottom surface of an upper polyethylene foam sheet entering the laminating slot are heated by the hot air ribbon and juxtaposed and pressed by the press roll whereby to fuse the two polyethylene foam sheets together. A plurality of polyethylene foam sheets can be laminated by having a plurality of laminating assemblies along the conveyor.
Abstract:
A transfer device in which a material which transmits a laser beam LB is employed as an upper mold, and a photothermal conversion layer is formed thereon. A transfer film, at which a transfer material layer is formed, and a workpiece are superposed and pressured between the upper mold and a lower mold. During this pressuring, the laser beam is irradiated in accordance with a pattern of an organic electroluminescent light-emitting layer that is to be formed on the workpiece. Thus, the photothermal conversion layer is heated and the transfer material layer is softened. As a result, the transfer material layer is cleaved and detached from a temporary support, and a component in the transfer material layer that is to form the organic electroluminescent light-emitting layer is transferred to the workpiece. Accordingly, efficient transfer processing is enabled when a transfer material is transferred to a transfer object by a thermal imaging process.