摘要:
One aspect of the present disclosure is directed to low-alloy steels exhibiting high hardness and an advantageous level of multi-hit ballistic resistance with minimal crack propagation imparting a level of ballistic performance suitable for military armor applications. Certain embodiments of the steels according to the present disclosure have hardness in excess of 550 HBN and demonstrate a high level of ballistic penetration resistance relative to conventional military specifications.
摘要:
A dual hardness steel article comprises a first air hardenable steel alloy having a first hardness metallurgically bonded to a second air hardenable steel alloy having a second hardness. A method of manufacturing a dual hard steel article comprises providing a first air hardenable steel alloy part comprising a first mating surface and having a first part hardness, and providing a second air hardenable steel alloy part comprising a second mating surface and having a second part hardness. The first air hardenable steel alloy part is metallurgically secured to the second air hardenable steel alloy part to form a metallurgically secured assembly, and the metallurgically secured assembly is hot rolled to provide a metallurgical bond between the first mating surface and the second mating surface.
摘要:
A method for consolidating a pre-form made of powder, comprising: (a) placing the pre-form between smart susceptors; (b) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (c) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (d) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation.
摘要:
A composite material with a ballistic protective effect having a first, outer layer made of a first steel alloy and at least one second layer which is arranged under the first layer and is made of a second steel alloy. The composite material with a ballistic protective effect allows for a reduction in the weight or the wall thicknesses of the composite material in comparison to conventional composite ballistic materials, by utilizing a first steel alloy of the first layer that has the following alloy constituents in percent by weight (% by weight): 0.06%≦C ≦1.05%, 0.05%≦Si≦1.65%, 0.3%≦Mn≦2.65%, 0.015%≦Al≦1.55%; Cr≦1.2%, Ti≦0.13%, Mo≦0.7%, Nb≦0.1%, B≦0.005%, P≦0.08%, S≦0.01%, Ni≦4.0%, and V≦0.05%, the remainder being Fe and inevitable impurities. The second layer of the composite material having a higher elongation than the first layer.
摘要翻译:一种具有防弹效果的复合材料,具有由第一钢合金制成的第一外层和至少一个第二层,该第二层布置在第一层下方并由第二钢合金制成。 具有弹道保护作用的复合材料与传统的复合材料弹道材料相比,能够减少复合材料的重量或壁厚,通过利用具有以下合金成分的第一层的第一钢合金的百分比乘以 重量(重量%):0.06%@ C @ 1.05%,0.05%@ Si @ 1.65%,0.3%@ Mn @ 2.65%,0.015%@ Al @ 1.55% Cr@1.2%,Ti@0.13%,Mo@0.7%,Nb@0.1%,B@0.005%,P@0.08%,S@0.01%,Ni@4.0%,V@0.05%,其余为Fe 和不可避免的杂质。 复合材料的第二层具有比第一层高的伸长率。
摘要:
An aspect of the present disclosure is directed to low-alloy steels exhibiting high hardness and an advantageous level of multi-hit ballistic resistance with low or no crack propagation imparting a level of ballistic performance suitable for military armor applications. Various embodiments of the steels according to the present disclosure have hardness in excess of 550 BHN and demonstrate a high level of ballistic penetration resistance relative to conventional military specifications.
摘要:
The invention relates to a super bainite steel consisting of the following elements in weight %: C: 0.4-1.1 Mn: 0.4-2.1 Si: 0.15-1.2 Al: 0.0-2.0 Cr: 0.0-1.4 Ni: 0.0-2.5 Mo: 0.0-0.6 V: 0.0-0.3 Co: 0.0-3.0 P:
摘要:
An aspect of the present disclosure is directed to low-alloy steels exhibiting high hardness and an advantageous level of multi-hit ballistic resistance with low or no crack propagation imparting a level of ballistic performance suitable for military armor applications. Various embodiments of the steels according to the present disclosure have hardness in excess of 550 BHN and demonstrate a high level of ballistic penetration resistance relative to conventional military specifications.
摘要:
Maraging steel compositions, methods of forming the same, and articles formed therefrom comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 3.0 to 8.0% Ti, up to 0.5% Al, the balance Fe and residual impurities. The composition may be a first layer of a composite plate, and may have a second layer deposited on the first layer, the second layer having a composition comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 1.0 to 3.0 Ti, up to 0.5% Al, the balance Fe and residual impurities. The first layer may have a hardness value ranging from 58 to 64 RC, and the second layer may have a hardness value ranging from 48 to 54 RC. The first layer may be formed employing powdered metallurgical techniques. Articles formed from the compositions include armored plate.
摘要:
It has been commonly believed that very thick gauge high strength aluminum alloy product such as AA2139 plate cannot be formed to the required sharp angles to form the highly protective underbody armor for the MRAP vehicles. The present process and method of manufacture provides a means for strategically combining the metallurgical process of manufacturing high strength aluminum alloys and the forming process of V shaped hull to improve the formability of the very thick gauge high strength alloy product so much that even the very thick gauge (thicker than 1 inch) plate can be formed to severe forming angles. This combined process allowed successful manufacturing of high performance V shaped hulls for the Mine Resistant Ambush Protected (MRAP) vehicles.