Abstract:
Methods for loading a compressed fluid into and discharging the compressed fluid out of containment are provided. Compressed fluid is injected into a bottom portion of a container system for storage and/or transport until a target pressure is reached after which gas is withdrawn from an upper portion of the container system at a rate to maintain the target pressure while the compressed fluid is injected in the bottom portion. The compressed fluid is cooled through an expansion valve and by refrigerated chillers or by injecting a cold liquid of the same chemical composition as the compressed fluid into the compressed fluid prior to injection into the container system. Discharge from the container system to a receiving facility begins with blow down from the bottom portion of the container system without a displacement fluid and continues until pressure falls below an acceptable differential pressure.
Abstract:
An LNG fuel tank system for at least one gas engine used for ship propulsion is comprising at least one LNG fuel tank (4) and a gas vessel (8), the LNG fuel tank to be-bunkered from an onshore LNG pressure tank filling facility by means of an LNG filling line (1). According to the present invention the LNG fuel tank (4) is a ship low pressure controlled atmospheric pressure LNG tank, and the gas vessel (8) is a single shell non-insulated pressure vessel arranged to accumulate flashed and boil-off gas during LNG bunkering and pressure relieving the LNG fuel tank, respectively, and the gas engines are fuelled from either the gas vessel (8) or the LNG fuel tank (4), dependent on a predefined gas vessel pressure.
Abstract:
Provided is a blanket installation method, which includes a transporting step of transporting a blanket unit (1), in which the blanket (2) and a transport jig (3) are coupled in one body, between an inner tank (60) and an outer tank in a double shell tank, in a suspended condition, and a mounting step of mounting the blanket unit on a shell plate of the inner tank. According to the method, in the event of installing work of the blanket, the improvement in work efficiency and safety can be achieved.
Abstract:
A process for insulating the void in a thermal distance piece in a low-temperature or cryogenic storage tank uses a vacuum source to draw insulation into the TDP. Two remotely spaced openings to the void are provided. A strainer is temporarily mounted in one of the openings. The other opening is connected to a suction wand. The wand has an inner cylinder that extends through an outer cylinder and projects outwardly from a proximal end of the outer cylinder. Distal air vents are provided on the inner cylinder, near a distal cap that connects distal ends of the cylinders. Proximal air vents are provided on a proximal cap that connects a portion of the inner cylinder to a proximal end of the outer cylinder. The distal end of the wand is inserted into a container of insulation.
Abstract:
Embodiments of the invention relate to support arrangements for semi-membrane tank walls and, more particularly, to a universal support assembly for tanks that experience thermal expansion and contraction. One embodiment of the invention may include a tank assembly having at least one tank wall, a support structure at least partially adjacent to the wall, and a link member coupling the tank to the support structure. The link member may be configured to accommodate relative movement between the tank and the support structure through rotation. The link member may be coupled to the tank wall by a ball and socket joint and coupled to the support structure with another ball and socket joint, allowing substantially unlimited in-plane movement of the tank wall relative to the support structure.
Abstract:
The present invention provides an extruded beam element suitable for the construction of sandwich structures, wherein the transverse cross section of the beam comprises two parallel plates (2,3), each having a first part (2) and a second part (3), wherein the first parts of said plates (2) are connected by multiple webs, wherein at least two of said webs (1) are inclined with respect to the longitudinal plane (Y) perpendicular to the plates (2,3), and wherein the first parts (2) and the webs (1,5) form a relatively rigid portion of the beam element and the second parts (3) form a relatively flexible portion of the beam element, as well as sandwich panels and tanks comprising said beam elements.
Abstract:
There is provided a cryogenic tank having a dual construction for storing ultralow temperature liquid with improvement which allows simplicity in its construction and readiness of setup and allows reduction in the setup, yet achieves high reliability. For accomplishing the above-noted object, in a cryogenic tank having a dual construction with an inner tank for storing low-temperature liquefaction fluid therein and an outer tank enclosing the bottom and the shell of the inner tank. The inner tank includes a bottomed inner vessel formed of concrete and an inner cold resistant relief covering the inner face of the inner vessel. The outer tank includes a bottomed outer vessel formed of concrete and an outer cold resistant relief covering the inner face of the outer vessel.
Abstract:
An arrangement is disclosed for connecting at least one double-walled pipe of stainless steel to a LNG tank having an inner shell of stainless steel and an outer shell spaced at a distance from the inner shell, the inner and outer shells defining an isolation space therebetween. The at least one double-walled pipe includes a common outer wall and at least one inner pipe. The outer wall of the pipe is connected to the inner shell of the tank in such a way that the outer wall and/or a pipe fitting of cold resistant material between the inner shell and the outer wall is arranged to compensate for changes in the length of the outer wall of the pipe and/or of the pipe fitting due to temperature differences between the outer wall of the pipe and the inner shell of the tank.
Abstract:
A method for receiving and processing dry gas into liquefied natural gas, offloading the liquefied natural gas, and transporting the liquefied natural gas to another location, wherein the method can include using a connecting device to: attach and hold a transport vessel to a floating liquefaction vessel. The connecting device can have an inner walkway configured to extend and retract from an outer walkway to accommodate for motions. The method can include receiving and cooling dry gas to form liquefied natural gas, and transferring the liquefied natural gas to the transport vessel. The method can include dynamically positioning the transport vessel in proximity to the floating liquefaction vessel using motions measured by motion sensors and the like. The method can include storing the liquefied natural gas on the floating transport vessel, releasing the transport vessel from the connecting device, and transporting the liquefied natural gas to another location.
Abstract:
The invention relates to a method for storing a cryogenic fluid, implementing a tank including at least one vessel capable of containing the cryogenic fluid. The method including the following steps: a) placing the tank on, in, or partially in soil including permafrost; b) feeding the cryogenic fluid into the vessel; and c) exchanging heat between the cryogenic fluid and the soil, in order to freeze and/or keep a portion of the soil frozen, such that said portion of the soil can be used as the foundation for the tank.