Abstract:
An on-the-go monitor and control means and method for an agriculture machines includes on-the-go soil sensors that can be used to control tillage and seeding depth. On seeder implements, the sensors provide information that affects uniform plant emergence.
Abstract:
A method of filling level measurement in a container (12) having a first medium (14) and at least one second medium (16) arranged thereabove, in particular a foam layer, wherein an electromagnetic signal is transmitted, in particular along a probe (28) arranged in the container (12), and a signal curve (S) of the signal reflected in the container (12) is recorded, wherein a signal time of flight (t) up to a border transition (18, 20) to the first medium (14) and/or up to the second medium (16) is determined with reference to the signal curve (S) and a filling level of the first medium (14) and/or a filling level of the second medium (16) is determined from the signal time of flight (t). In this respect, the border transition (18, 20) is recognized from the integral over the signal curve (S), the integral starting from a reference position (t0).
Abstract:
The present inventions relate generally to methods, apparatus and systems for sharing measurements related to snow stability and structure which may be used to assess avalanche risk among multiple users. Such measurements may include a profile of snow layer hardness according to depth, a profile of snow temperature according to depth, a profile of snow grain size according to depth, ambient temperature, slope aspect and inclination, and humidity. The disclosed apparatus includes a mobile device configured to send and receive said measurements, and to display such measurements on an area map. The disclosed apparatus also includes a server configured to receive said measurements from a plurality of mobile devices, analyze the measurements to evaluate the avalanche risk at a geographic area, and transmit said measurements and evaluated avalanche risk to the mobile devices.
Abstract:
The present inventions relate generally to methods, apparatus and systems for measuring snow stability and structure which may be used to assess avalanche risk. The disclosed apparatus includes a sensing unit configured to sense a temperature of a layer of snow as the sensing unit is being driven into the layer of snow. The disclosed apparatus may also be configured to take other environmental measurements, including resistance to penetration, humidity, grain size, slope aspect and inclination. Methods and apparatus are also disclosed for generating a profile of snow layer temperature according to depth based on the sensed temperature. Systems and apparatus are also disclosed for sharing the generated profiles among a plurality of users via a central server, and for evaluating an avalanche risk at a geographic location.
Abstract:
The present inventions relate generally to methods, apparatus and systems for measuring snow stability and structure which may be used to assess avalanche risk. The disclosed apparatus includes a sensing unit configured to sense a resistance to penetration as the sensing unit is being driven into a layer of snow. The disclosed apparatus may also be configured to take other environmental measurements, including temperature, humidity, grain size, slope aspect and inclination. Methods and apparatus are also disclosed for generating a profile of snow layer hardness according to depth based on the sensed resistance to penetration and identifying areas of concern which may indicate an avalanche risk. Systems and apparatus are also disclosed for sharing the generated profiles among a plurality of users via a central server, and for evaluating an avalanche risk at a geographic location.
Abstract:
In a method for characterizing skin treatment agent, a device having several sets of electrodes is applied to the skin. The electrode sets have differing electrode distances, such that fields having different reach can be generated. Inverse profiling is used to calculate the dielectric permittivities of individual skin layers, which in turn allows to observe the water transport mechanism in the skin. These transport mechanisms can be used to assess the effect of the agent on the skin. An advantageous device for implementing this method comprises coplanar waveguides for generating the fields.
Abstract:
A method used for determining a profile depth or wear on a tread of a tire of a vehicle, and/or a tire characteristic, a magnetic field being detected by a magnetic field sensor disposed in the interior of the tire, particularly in the area of the tread on the tire interior, or at a distance from the tire, particularly in the area of a wheel housing or a wheel well of the vehicle, the magnetic field being transmitted or changed by at least one indicator element disposed in the tread on the tire exterior. The current wear state of the tread and/or the tire characteristic, particularly a tire type and/or permissible top speed, is determined based on output signals of the magnetic field sensor. The invention further relates to tires.
Abstract:
The invention relates particularly to sensing devices and techniques which may be used to provide measurement data to aid an inertial navigation system, or attitude and heading reference system, and so bound the growth of errors which increase with time in such systems when operating autonomously. In one aspect, the invention relates to a method of determining the path length along a borehole from a known reference point to a probe or tool which progresses through a drillpipe or tubular string, to provide data to aid an inertial navigation system. A sensing device 15 is used to detect joints 11 between sections of drillpipe or tubular string within the borehole and the path length is determined from the number of joints detected and a known length of each section of drillpipe or tubular string. In another aspect, a flow measuring device, such as an impeller, is used to measure the velocity of the probe or tool through the drillpipe or tubular string. In another aspect the invention relates to a method of determining the velocity of a probe or a tool moving through a drillpipe or tubular string to provide data to aid an inertial navigation system. Two sensing devices, which are spaced apart by a known distance on the probe or tool, are used to detect one or more positions within a drillpipe or tubular string, and the velocity of the probe or tool is determined from the elapsed time between each sensor detection of the or each position and the distance between the sensors.
Abstract:
In a method for determining depth when putting in place supporting elements into a waterbed, a pressure sensor fastenable to a supporting element or a device connected to the supporting element measures a water pressure, the reading is supplied by the pressure sensor and transmitted via signal lead to an evaluating unit which determines the penetration depth of the supporting element from the reading differences which occur during the sinking of the pressure sensor on penetration of the supporting element into the waterbed.
Abstract:
A real-time fastener measurement system includes an anvil (10) having a striking surface (16) that engages a fastener as it is upset. Three proximity sensors (20) are disposed at 120.degree. intervals around a striking surface of the anvil. A computer system (110) reads the electronic signals produced by the proximity sensors just after the fastener has been upset and converts the signals to digital values. The computer stores a piecewise linear function that has been predetermined for each sensor and uses the function to convert the digital values of the proximity sensor to fastener head height.