Abstract:
A distributed optical fiber sensing signal processing method for safety monitoring of underground pipe network, which belongs to infrastructure safety monitoring field, which is aimed to improve the intelligent ability of detection and identification of the existing distributed optical fiber sound/vibration sensing system under complex application conditions. The present invention utilizes the distributed optical fiber sound/vibration sensing system to pick up the sound or vibration signal of the whole line along the detection cable; and the customized short time feature and long time feature are respectively extracted from the relative quantity of the sound or the vibration signal at each spatial point in the whole monitoring range. The Bayesian identification and classification network at each spatial point is constructed and trained based on the prior knowledge of the collected signal features and their different background noises.
Abstract:
Techniques are disclosed relating to geophysical surveying. In some embodiments, an added unique fold parameter is determined for one or more bins during a survey of a geophysical formation. In some embodiments, the position of one or more elements of a survey system is adjusted based on the added unique fold. In some embodiments, a ratio of the determined added unique fold to a theoretically obtainable added unique fold is determined, and the adjustment may be based on this ratio. In some embodiments, an acceptability parameter is also considered. In some embodiments, survey elements may be steered to increase added unique fold without leaving coverage holes that violate an acceptability criterion. In some embodiments, the steering is performed automatically. In some embodiments, coverage parameters are graphically displayed to an operator.
Abstract:
An accelerometer or a seismometer using an in-plane suspension geometry having a suspension plate and at least one fixed capacitive plate. The suspension plate is formed from a single piece and includes an external frame, a pair of flexural elements, and an integrated proof mass between the flexures. The flexural elements allow the proof mass to move in the sensitive direction in the plane of suspension while restricting movement in all off-axis directions. Off-axis motion of the proof mass is minimized by the use of intermediate frames disbursed within and between the flexural elements. Intermediate frames can include motion stops to prevent further relative motion during overload conditions. The device can also include a dampening structure, such as a spring or gas structure that includes a trapezoidal piston and corresponding cylinder, to provide damping during non-powered states. The capacitive plate is made of insulating material. A new method of soldering the capacitive plate to the suspension plate is also disclosed.
Abstract:
A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
Abstract:
According to one example, a system includes a flexural beam having a first face and a second face opposite the first face and a first coil of optical fiber coupled to the first face, where the first coil of optical fiber is encapsulated by a cured encapsulation composition, wherein the encapsulation composition has a viscosity from 30 to 300 millipascal-second at 25° C.
Abstract:
A high sensitivity structural health monitoring network includes a plurality of sensor nodes disposed apart from each other and communicating through one or more sensor channels. The nodes include smart sensor circuit boards with an interface to a wireless smart sensor board platform, a multi-axis accelerometer having a measurement range and resolution set to provide sensitivity to measure ambient structural vibrations an analog to digital converter for converting signals that includes a plurality of individual channels being individually programmable for signal conditioning for providing data to the interface. A network framework provides network services including a time synchronization service with network-wide global timestamps for sensor data and a unified sensing service that supports collection of data for all sensor channels from all nodes together with a single set of associated time stamps.
Abstract:
A vibration sensor having at least one magnet and at least one coil, a first leg having a first and second mounting positions, and a second leg having first and second mounting positions, wherein a coil unit having a coil is arranged at the first mounting position of the first leg, and wherein a permanent magnet holder with a magnet is arranged at the first mounting position of the second leg, and the coil unit surrounds the magnet unit so that the magnet unit can move relative to the coil unit and be surrounded by the coil unit, and wherein the first leg, in the second mounting position, is arranged with a spacing relative to the second mounting position of the second leg, so that the first leg at the first mounting position is arranged spring-like with respect to the second leg at the first mounting position.
Abstract:
Methods, systems, and apparatuses are disclosed for conducting reconnaissance marine seismic surveys. In one example method of acquiring a marine seismic survey, a plurality of streamers are towed behind an acquisition vessel, the plurality of streamers defining a swath. An independent source is towed by an independent source vessel above one or more of the plurality of towed streamers.
Abstract:
Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.
Abstract:
A method is provided for transmitting signals on a multi-conductor cable (12) formed from a plurality of conductors (1-7) surrounded by an armor (10), the plurality of conductors having a central conductor (7) surrounded by a first peripheral layer of conductors (1-6) with an even number of conductors symmetrically arranged around the central conductor. The two following transmission modes are carried out simultaneously: a common mode (TX1) that uses the central conductor (7) with a return on the armor (10), for transmitting a first signal (s1); and a differential mode (TX2) between a first path comprising all odd rank conductors (1,3,5) of the peripheral layer and a second path comprising all even rank conductors (2,4,6) of the peripheral layer, for transmitting a second signal (s2).