Abstract:
An antenna core includes a laminate of a plurality of Co-based amorphous magnetic alloy thin strips in which a length ratio of a long axis to a short axis is greater than 1. 60% or more of the Co-based amorphous magnetic alloy thin strips in terms of the number of the thin strips as percentage have a line-shaped mark formed along the long axis on at least one surface thereof. An antenna includes the antenna core and a winding wound around the antenna core along the long axis.
Abstract:
One-time, single-use sensor elements (22, 46) are provided for detecting the occurrence of predetermined conditions such as temperature and elapsed time-temperature. The sensor elements (22, 46) preferably comprise elongated, glass-coated, metal alloy, amorphous or nanocrystalline microwires (30, 48), which can be placed in a position to detect the predetermined condition of interest. An alternating magnetic field detector (28) may be used to continuously or periodically interrogate the sensor elements (22, 46) to determine if the predetermined condition has occurred. In one aspect of the invention, the microwires (30, 48) experience a change in configuration upon the occurrence of the predetermined condition, and have correspondingly different induced remagnetization responses. In another embodiment, a static microwire is provided having an initial bi-stable single domain; when a predetermined time-temperature condition is experienced, multiple domains are established in the microwire, and this can be detected by the detector (28).
Abstract:
A method and resultant device, in which metal nanoparticles are self-assembled into two-dimensional lattices. A periodic hole pattern (wells) is fabricated on a photoresist substrate, the wells having an aspect ratio of less than 0.37. The nanoparticles are synthesized within inverse micelles of a polymer, preferably a block copolymer, and are self-assembled onto the photoresist nanopatterns. The nanoparticles are selectively positioned in the holes due to the capillary forces related to the pattern geometry, with a controllable number of particles per lattice point.
Abstract:
Disclosed is a soft magnetic Co-based metallic glass alloy with high glass forming ability, which has a supercooled-liquid temperature interval (ΔTχ) of 40 K or more, a reduced glass-transition temperature (Tg/Tm) of 0.59 and a low coercive force of 2.0 A/m or less. The metallic glass alloy is represented by the following composition formula: [Co1−n−(a+b)FenBaSib]100−χMχ, wherein each of a, b and n represents an atomic ratio satisfying the following relations: 0.1≦a≦0.17; 0.06≦b≦0.15; 0.18≦a+b≦0.3; and 0≦n≦0.08, M representing one or more elements selected from the group consisting of Zr, Nb, Ta, Hf, Mo, Ti, V, Cr, Pd and W, and χ satisfying the following relation: 3 atomic %≦χ≦10 atomic %. The present invention overcomes restrictions in preparing a metallic glass bar with a thickness of 1 mm or more from conventional Co—Fe—B—Si-based metallic glasses due to their poor glass forming ability, and provides an excellent Co—Fe—B—Si-based metallic glass allowing the formation of bulk metallic glass, which serves as a key technology for achieving a broader application fields of metallic glass products.
Abstract translation:公开了一种具有高玻璃形成能力的软磁性Co基金属玻璃合金,其具有40K或更高的过冷液体温度间隔(DeltaT i i i),玻璃化转变温度(T &lt; /&gt; / T&gt; m)为0.59,矫顽力为2.0A / m以下的低矫顽力。 金属玻璃合金由以下组成式表示:[Co 1-n-(a + b)] N < a,b和n分别表示满足以下关系的原子比:0.1 <= a < = 0.17; 0.06 <= b <= 0.15; 0.18 <= a + b <= 0.3; 0≤n≤0.08,M表示从由Zr,Nb,Ta,Hf,Mo,Ti,V,Cr,Pd和W组成的组中选出的一种或多种元素,以及满足以下关系的chi:3原子 %<= chi <= 10原子%。 本发明克服了由于其较差的玻璃形成能力而制备与常规Co-Fe-B-Si系金属玻璃相比厚度为1mm以上的金属玻璃棒的限制,提供了优异的Co-Fe-B- Si基金属玻璃允许形成块状金属玻璃,其作为实现金属玻璃产品更广泛应用领域的关键技术。
Abstract:
A magnetic implement has a gap size ranging from about 1 to about 20 mm. The implement comprises a magnetic core composed of an amorphous Fe-based alloy. A physical gap is disposed in the core's magnetic path. The alloy has an amorphous structure; is based on the components: (Fe—Ni—Co)—(B—Si—C). The sum of its Fe+Ni+Co content is in the range of 65–85 atom percent. Advantageously, the core exhibits an overall magnetic permeability ranging from about 40 to about 200 and enhanced magnetic performance.
Abstract:
A heat treatment was carried out in a pressurized condition on an amorphous metal ribbon containing Fe and Co as main components and being represented by the general formula: (Co(1-c)Fec)100-a-bXaYb. (In the formula, X represents at least one species of element selected from Si, B, C and Ge, Y represents at least one species of element selected from Zr, Nb, Ti, Hf, Ta, W, Cr, Mo, V, Ni, P, Al, Pt, Rh, Ru, Sn, Sb, Cu, Mn and rare earth elements, c, a and b satisfy 0≦c≦1.0, 10
Abstract:
A unitary amorphous metal magnetic component for an axial flux electric machine such as a motor or generator is formed from a spirally wound annular cylinder of ferromagnetic amorphous metal strips. The cylinder is adhesively bonded and provided with a plurality of slots formed in one of the annular faces of the cylinder and extending from the inner diameter to the outer diameter of the cylinder. The component is preferably employed in constructing a high efficiency, axial flux electric motor. When operated at an excitation frequency “f” to a peak induction level Bmax the unitary amorphous metal magnetic component has a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, the core loss, excitation frequency and peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
Abstract:
Soft magnetic composites having a high compressibility and a high permeability are described. These two characteristics are obtained by combining high compressibility iron powder to high permeability powders. The iron powder is of a high compressibility and in a size range and proportion that results in a powder mass amenable to compaction by industrially viable and cost-effective compaction process such as uniaxial cold compaction. The high compressibility iron powder helps achieve high relative density and also allows easy path for the passage of magnetic flux.
Abstract:
Disclosed herein is a magnetic powder which can provide a magnet having a high magnetic flux density and excellent magnetizability and reliability especially excellent heat resisting property (heat stability). The magnetic powder is composed of an alloy composition represented by Rx(Fe1−yCoy)100-x-z-wBzAlw (where R is at least one kind of rare-earth element, x is 8.1-9.4 at %, y is 0-0.30, z is 4.6-6.8 at %, and w is 0.02-1.5 at %), the magnetic powder being constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, wherein the magnetic powder has characteristics in which, when the magnetic powder is formed into an isotropic bonded magnet by mixing with a binding resin and then molding it, the irreversible susceptibility (Xirr) which is measured by using an intersectioning point of a demagnetization curve in the J-H diagram representing the magnetic characteristics at the room temperature and a straight line which passes the origin in the J-H diagram and has a gradient (J/H) of −3.8×10−6H/m as a starting point is less than 5.0×10−7H/m, and the intrinsic coercive force (HCJ) of the magnet at the room temperature is in the range of 406-717 kA/m.
Abstract:
There is disclosed an amorphous soft magnetic material represented by a composition formula:Co.sub.x Zr.sub.y Pd.sub.z M.sub.a wherein M denotes at least one element selected from a group consisting of niobium, chromium, vanadium, tantalum, tungsten, molybdenum; and0.82.ltoreq.x.ltoreq.0.940.04.ltoreq.y.ltoreq.0.100.01.ltoreq.z.ltoreq.0.080.01.ltoreq.a.ltoreq.0.10.The amorphous soft magnetic material, which has a high saturated magnetic flux density, a low coercive force, a high magnetic permeability and excellent wear and corrosion resistances, can be obtained by adding at least one or more of the elements of the Va and VIa groups to a Co--Zr--Pd amorphous soft magnetic material.
Abstract translation:PCT No.PCT / JP91 / 01458 Sec。 371日期:1992年7月6日 102(e)日期1992年7月6日PCT 1991年10月25日PCT PCT。 第WO92 / 09091号公报。 日期:1992年5月29日公开了由组成式:CoxZryPdzMa表示的无定形软磁性材料,其中M表示选自铌,铬,钒,钽,钨,钼中的至少一种元素; 和0.82 = x = 0.94 0.04 = y = 0.10 0.01 = z = 0.08 0.01 = a <0.10。 通过添加至少一种或多种Va和VIa基团的元素,可以获得具有高饱和磁通密度,低矫顽力,高磁导率和优异耐磨损和耐腐蚀性的非晶软磁性材料 到Co-Zr-Pd无定形软磁材料。