Abstract:
A first member has a magnet assembly that includes at least one permanent magnet pair, and a second member includes an electromagnetic coil. A control circuit controls the supply of power to the electromagnetic coil as well as regeneration of power from the electromagnetic coil. The permanent magnet pair generates its strongest magnetic field along a magnetic field direction on homopolar contact planes where first magnetic poles contact one another, outward from the center of the permanent magnet pair along the magnetic field direction. The electromagnetic coil is positioned such that current will flow in a direction intersecting the magnetic field direction.
Abstract:
An internal permanent magnet machine has multiple rotor sections, each section having multiple rotor laminations. Permanent magnets are placed asymmetrically in lamination openings to attenuate oscillations in torque caused by harmonic components of magnetic flux.
Abstract:
Disclosed is a rotary device of a generator or motor which includes: a stator having a hollow portion formed at the inside thereof and a plurality of slots formed to wind coils therearound, each of the plurality of slots being skewed at a predetermined angle; a rotor shaft formed of a nonmagnetic material; a cylindrical rotor body adapted to axially rotate together with the rotor shaft; a plurality of N-polar and S-polar permanent magnet groups insertedly coupled radially along the outside of the center portion of the rotor body in an alternating arrangement; a plurality of magnetic flux-increasing magnets insertedly coupled along the inside of the rotor body and arranged on the lines of magnetic force formed by the N-polar and S-polar permanent magnet groups, for increasing magnetic flux; and a rotor adapted to be rotatably inserted into the hollow portion of the stator.
Abstract:
A rotor for an electric machine includes a plurality of magnet stacks having at least five permanent magnets formed into a skew pattern within each of the magnet stacks. The skew pattern has a skew angle and at least two skew steps, and is an angle of rotation about the axis between individual magnets adjacent to the skew steps. The skew pattern may be an axially-symmetric V-shape. The plurality of magnet stacks may have five, six, or eight permanent magnets therein. The number of skew steps may be equal to two or three. The skew angle may be calculated as 360 degrees, divided by the number of skew steps plus one, multiplied by the least common multiple of the number of rotor poles and the number of the plurality of stator slots.
Abstract:
A rotary electric machine comprising a rotor (30A) including a plurality of permanent magnets having magnetic poles and a stator (20A) including a plurality of tooth sections each having a front end portion which faces the rotor, wherein the rotor (30A) has a skew structure having a change section in which boundaries between the magnetic poles change with respect to a rotation axis direction, and the front end portion of each of the plurality of tooth sections of the stator (20A) has an auxiliary slot (24A) which is selectively formed in an extending manner at one portion of the front end portion in the rotation axis direction such that substantially a center of the auxiliary slot in the rotation axis direction is opposed to a center of the change section in the rotation axis direction, and no auxiliary slot is formed at portions located on extensions of the auxiliary slot in the rotation axis direction.
Abstract:
A permanent-magnetic type rotary electric machine includes a stator having teeth that are arranged in the peripheral direction thereof and around which armature windings of plural phases are wound, and a rotor having plural permanent magnets arranged so that the poles of the permanent magnets are alternately different in the peripheral direction thereof, higher harmonic waves being contained in a no-load induced voltage waveform. A (6p−1)-th higher harmonic wave and a (6p−1)-th higher harmonic wave (p represents a positive integer) when an electrical angle of 360° is set as a fundamental wave in the no-load induced voltage waveform are made substantially coincident with each other in amplitude and phase.
Abstract:
A brushless motor includes a stator and a rotor. The stator includes an annular stator core having teeth arranged with a spacing in a circumferential direction of the annular stator core; and coils wound around the teeth respectively. The rotor includes a rotor core and magnetic poles of segment magnets arranged annularly along a circumferential direction of the rotor core. The segment magnets are stacked at a plurality of stages in an axial direction of the rotor core. A length direction of each of the segment magnets is parallel with the axial direction of the rotor core. The following expression is satisfied: (2×β/P)+θ
Abstract:
A stepping motor comprises first to third coil portions and first to second rotors. The first rotor has a cylindrical shape and a circumferential surface thereof is magnetically-polarized so as to alternately arrange south poles and north poles. The first rotor is disposed inside the first and second coil portions, and is rotated by magnetic fields generated at a time when the first and second coil portions are energized. The second rotor has a disk shape and a surface thereof is magnetically polarized so as to alternately arrange south poles and north poles. The second rotor is disposed such that edge areas of both surfaces thereof are interposed between the second and third coil portions. The second rotor is rotated by magnetic fields generated at a time when the second and third coil portions are energized.
Abstract:
The invention relates to an electric synchronous machine. There is a need for a dual rotor electric synchronous machine which has a mechanism for adjusting the rotor relative angular displacement while the machine is running in order to reduce back emf. There is a need for such an adjusting mechanism which can carry high torque loads. An electric synchronous machine is provided with a housing, first and second shafts rotatably supported in the housing, each with a corresponding rotor fixed thereon, both having permanent magnet field poles. Each rotor is surrounded by a corresponding annular stator, and stator coils are wound through both stators. A planetary transmission is coupled between the first and second shafts and operable during rotation of the first and second shafts to adjust an angular orientation of the second shaft with respect to the first shaft.
Abstract:
The aim of the invention is to provide a linear rotation drive wherein the oscillating torques are reduced to a minimum and whose rotation drive is devoid of axial forces. For this purpose, a magnet of the linear rotation drive is provided with sloped sections or a plurality of magnet sections is configured to give at least two sloped magnet arrangements which are symmetric to a line extending in the circumferential direction of the linear rotation drive. Oscillating torques can also be avoided by distributing the magnets across the circumference of the rotor or stator in an uneven manner. Favorable results can be obtained when the least common multiple of the number of grooves and the number of poles is as high as possible.