Abstract:
In a vehicle, having a fixed supporting structure and a load movable relative thereto, a jam tolerant actuating system, a method for controlling this system including: Locating a physical coupling/decoupling mechanism between the load and an actuator assembly as close a practicable to the load; constructing the coupling/uncoupling mechanism to be reversible, and hence testable; and controlling the connection/disconnection via decision making electronics which will detect any system failure by monitoring, at a minimum: actuator main motor load and speed, and actuator output load. Also set forth are specific embodiments of pivotable rotary geared actuators as well as linear ball screw type actuators embodying the coupling/uncoupling mechanisms of this invention.
Abstract:
The invention relates to a hydrostatic actuator, having a master cylinder including a housing and a piston, which is axially mountable in the housing and which pressurizes a pressure chamber filled with pressure medium, a planetary rolling-contact gear system that converts a rotary drive into an axial motion and that has a sleeve, a gear-driven spindle, and planetary rolling elements that roll therebetween, and an electric motor that drives the planetary rolling-contact gear system and that has a stator rigidly connected to a housing and a rotor that can be rotated relative to the stator. In order to optimize the installation space, the pressure chamber is annular and the planetary rolling-contact gear system is arranged radially within the pressure chamber.
Abstract:
An electricity generating device includes a generator, a counterweight flywheel, and a power transfer equipment. The counterweight flywheel includes a flywheel body connected to the generator, a clutch set on the flywheel body and a number of weight bodies movably attached to the flywheel body. The power transfer equipment is to drive the flywheel to rotate via the clutch, and in turn, the flywheel body is to drive the generator to generate electricity.
Abstract:
A polyphasic multi-coil generator includes a drive shaft, at least first and second rotors rigidly mounted on the drive shaft so as to simultaneously synchronously rotate with rotation of the drive shaft, and at least one stator sandwiched between the first and second rotors. A stator array on the stator has an array of electrically conductive coils mounted to the stator in a first angular orientation about the drive shaft. The rotors each have an array of magnets which are circumferentially equally spaced around the rotor and located at the same radially spacing with respect to the centre of the rotor and the drive shaft at a first angular orientation relative to the drive shaft. The arrays of magnets on adjacent rotors are off-set by an angular offset relative to one another.
Abstract:
Actuators and valve-actuator combinations are disclosed which require low power for actuation, and which are particularly suitable for use to control a valve associated with a pipeline. Such an actuator (20) comprises a thrust member (26) moveable between two end of travel positions, an annular rotor having magnetic poles, an annular magnetisable stator having at least one winding and poles with which the rotor poles are aligned in each of a plurality of rotational positions of the rotor relative to the stator, and a drive connection between the rotor and the thrust member which is adapted to convert rotational movement of the rotor into linear movement of the thrust member. The actuator is able to hold its position using minimal energy, and may be located within or around an associated pipe.
Abstract:
The invention relates to a transmission for a motor vehicle with a transmission housing, with an electrical actuator for the actuation of the transmission and with an electrical control device for the control of the actuator. The transmission has a heat sink device 24 thermoconductively connected to the device and a heat insulating layer between a housing of the actuator and the heat sink device for the thermal insulation of the actuator housing and of the heat sink device, with the actuator housing being thermoconductively connected to the transmission housing or being part of the transmission housing. The invention furthermore relates to a corresponding actuator unit for a transmission.
Abstract:
An accessory system includes a generator integrally mounted with an accessory gearbox such that a drive gear of the generator is in meshing engagement with the geartrain.
Abstract:
When a drive shaft is in a non-drive state, a second drive rotor is in a non-engaged state with a driven rotor with respect to its own rotating direction. When the drive shaft is in a drive state, a rotating force of a first drive rotor is transmitted to the second drive rotor through an urging member. As a result, a power transmitting member revolves, and a centrifugal force arranges the power transmitting member at a second clamping position. The second drive rotor receives a reaction force from a driven rotor via the power transmitting member. As a result, the second drive rotor is relatively rotated in an opposite direction to a rotating direction of the first drive rotor with respect to the first drive rotor, against an urging force of the urging member. As a result, the first drive rotor is engaged with the driven rotor with respect to its own rotating direction. Accordingly, the clutch is stably operated.
Abstract:
A clutch member for use in a generator clutch has actuation structure including a face with a ramp. The ramp has a ramp angle of between 6.2° and 6.4°. The clutch member may be a sliding decoupler shaft. In addition, a rotor and a generator including the clutch members are also disclosed and claimed.
Abstract:
A power output device and a power enhancement member are provided. The power output device includes: a basic power supply member, a driving shaft, an output shaft, a clutch and a power enhancement member. The power enhancement member includes a rotation portion and a plurality of weight elements arranged on the rotation portion. In operation, the rotation portion rotates together with and around the output shaft, the plurality of weight elements in turn rotate together with the rotation portion around the output shaft. Meantime, the plurality of weight elements also make predetermined reciprocating movement relative to the rotation portion, such that the center of gravity of the power enhancement member is always offset from the output shaft towards a constant direction, thereby to promote and stabilize the rotation of the output shaft. The present invention is especially useful in applications that need large power output.