Abstract:
A hydrostatic actuator and an arrangement for attaching it to a receiving component are provided. The hydrostatic actuator has a master cylinder containing a housing and a piston movable axially within the housing which acts on a pressure chamber filled with a pressurizing agent. The piston is driven by a rotary-driven electric motor having a stator and a rotor, by a rolling planetary transmission that converts the rotary drive to an axial motion. In order to be able to produce such a hydrostatic actuator with little need for construction space, cost-effectively and with better quality, a supporting of the rolling planetary transmission is simplified, and the cooling and shielding of an electronic controller and the pressure behavior of the hydrostatic actuator is improved.
Abstract:
The invention relates to a hydrostatic actuator, having a master cylinder including a housing and a piston, which is axially mountable in the housing and which pressurizes a pressure chamber filled with pressure medium, a planetary rolling-contact gear system that converts a rotary drive into an axial motion and that has a sleeve, a gear-driven spindle, and planetary rolling elements that roll therebetween, and an electric motor that drives the planetary rolling-contact gear system and that has a stator rigidly connected to a housing and a rotor that can be rotated relative to the stator. In order to optimize the installation space, the pressure chamber is annular and the planetary rolling-contact gear system is arranged radially within the pressure chamber.
Abstract:
A hydrostatic actuator and an arrangement for attaching it to a receiving component are provided. The hydrostatic actuator has a master cylinder containing a housing and a piston movable axially within the housing which acts on a pressure chamber filled with a pressurizing agent. The piston is driven by a rotary-driven electric motor having a stator and a rotor, by a rolling planetary transmission that converts the rotary drive to an axial motion. In order to be able to produce such a hydrostatic actuator with little need for construction space, cost-effectively and with better quality, a supporting of the rolling planetary transmission is simplified, and the cooling and shielding of an electronic controller and the pressure behavior of the hydrostatic actuator is improved.
Abstract:
The invention relates to a hydrostatic actuator, having a master cylinder including a housing and a piston, which is axially mountable in the housing and which pressurizes a pressure chamber filled with pressure medium, a planetary rolling-contact gear system that converts a rotary drive into an axial motion and that has a sleeve, a gear-driven spindle, and planetary rolling elements that roll therebetween, and an electric motor that drives the planetary rolling-contact gear system and that has a stator rigidly connected to a housing and a rotor that can be rotated relative to the stator. In order to optimize the installation space, the pressure chamber is annular and the planetary rolling-contact gear system is arranged radially within the pressure chamber.
Abstract:
A motor vehicle transmission actuator for operation of a motor vehicle transmission, including gearsets which form different ratios, whereby the transmission actuator has a threaded shaft with at least one first threaded section, embodied as a right-handed thread and at least one second threaded section, embodied as a left-hand thread with just one electric motor for driving in the selection direction and the switching direction.
Abstract:
A motor vehicle transmission actuator for operation of a motor vehicle transmission, including gearsets which form different ratios, whereby the transmission actuator has a threaded shaft with at least one first threaded section, embodied as a right-handed thread and at least one second threaded section, embodied as a left-hand thread with just one electric motor for driving in the selection direction and the switching direction.
Abstract:
The invention relates to a transmission device for a motor vehicle that has a plurality of gear sets that form gear ratio steps, final control mechanisms being provided and an actuation device being provided for the actuation of the final control mechanisms that has a plurality of drivable main control elements, especially shift fingers, to act on final control mechanisms for the engagement of gear ratio steps, it being possible to act on at least one final control mechanism via either a first or a second main control element, these two main control elements of the final control mechanism being moved as a function of the main control element that acts on this final control mechanism in one of two different directions, especially opposite directions, when in this context there is identical drive direction, especially identical rotational direction; and an actuation device and a method for the electronically controlled determination of reference positions of an actuation device.
Abstract:
A lever system for actuating a clutch in the power train of a motor vehicle or of a disc brake, including: a lever (7) with a first side (7.1) rotatably supported on a pivot (8) and with a side (7.2) in functional connection with a pressing means (6). The lever (7) rests on a movable fulcrum (12) provided by a moveable support unit (10) that is displaceable in radial direction relative to the rotation axis of the clutch or the disc brake and which is displaceable using a motor-driven (15) spindle (14. The moveable support unit (10) rests on a raceway (11) and includes two roller sets (20.1, 20.2) each with rollers (21, 22, 22.1, 22.2). Each of the roller set (20.1, 20.2) includes at least three rollers (21, 22, 22.1, 22.2) and at least two of the rollers (22.1, 22.2) include approximately equal first diameters.
Abstract:
The invention relates to a transmission device for a motor vehicle comprising a plurality of connecting elements that are mounted in an axially movable manner and are each provided with a shift mouthpiece and comprising an actuating device having a control shaft that is mounted in a swiveling and axially movable manner, on which is provided a main control element and at least one secondary control element, the at least one secondary control element having functional regions for a movement in the same direction as well as functional regions for movement in the opposite direction, the at least one secondary control element extending in its neutral position essentially perpendicular to the direction of movement of the connecting elements, and, with respect to this neutral position on the secondary control element and on at least one shift mouthpiece, the particular functional regions for the movement in the same direction being designed with a bent shape and being axially symmetric to the particular, likewise bent functional regions for the movement in the opposite direction, and specifically with respect to a plane that is defined by the axis of rotation of the control shaft and the direction of movement of the connecting element.
Abstract:
An actuator device for a motor vehicle transmission, the motor vehicle transmission having:—at least two shafts;—a plurality of gear sets for the achievement of different gear steps;—a plurality of shift mechanisms that may be operated to produce or release a rotationally fixed shaft-gear connection; the actuator device having:—a plurality of output elements that can be moved in order to operatively engage in shift mechanisms of the transmission—a main actuator device having at least one main actuator element that is movable for the engagement of gears, the main actuator element preferably being an output element—a secondary actuator device having at least one movably mounted secondary actuator element, which is movable for the disengagement of gears, the at least one secondary actuator element preferably being an output element, the main actuator device and the secondary actuator device cooperating to produce controlled relative movements of at least two output elements.