摘要:
A linear fractional-N synthesizer includes phase and frequency detection module, a charge pump circuit, a loop filter, a voltage controlled oscillator, and a fractional-N divider. The phase and frequency detection module is operably coupled to produce a charge up signal, a charge down signal, or an off signal based on a phase difference and/or a frequency difference between a reference oscillation and a feedback oscillation. The charge pump circuit is operably coupled to produce a positive current when the charge up signal is received, a negative current when the charge down signal is received, and a non-zero offset current when the off signal is received. The charge pump includes a resistor and a control module. The resistor provides the non-zero offset current and the control module maintains the non-zero offset current at a substantially constant value. The loop filter is operably coupled to produce a control voltage based on at least some of: the positive current, the negative current, and the non-zero offset current. The voltage controlled oscillator produces an output oscillation based on the control voltage. The fractional-N divider module operably coupled to divided the output oscillation by a fractional N value to produce the feedback oscillation.
摘要:
A digital phase locked loop with fast locking capability includes a digitally controlled oscillator for producing an output signal phase locked to an input reference clock, a phase detector for measuring the phase difference between said input reference clock and a feedback clock, and a loop filter for producing a control signal for the digitally controlled oscillator The loop filter includes a proportional circuit for developing a first signal proportional to said phase difference, an integrator for developing a second integrated signal from said first signal, an adder for adding said first and second signals to develop said control signal, and a weighting circuit, preferably a linear multiplier, for selectively adding extra weight to the first signal at an input to the integrator to shorten the locking time of the phase locked loop in a fast locking mode and to rapidly achieve a stable frequency in holdover mode.
摘要:
A clock signal generation apparatus includes a first device for extracting reference information from an input digital signal. A first oscillator generates a reference clock signal having a frequency depending on a control signal. A second oscillator generates a basic signal having a fixed frequency. A first circuit loop operates for generating a first error signal in response to the reference clock signal and the extracted reference information, and for feeding the first error signal in response to the reference clock signal and the control signal. A second device operates for enabling one of the first circuit loop and the second circuit loop and disabling the other.
摘要:
A carrier-recovery loop for compensating frequency pulling in TDD and TDMA radio transceivers. The digital carrier-recovery loop includes a signal input, a digitally-controlled oscillator (DCO), a phase detector, a loop filter, and a memory. The memory stores an initializing value for the DCO, so that its frequency can be rapidly initialized at the start of a received frame. This initializing value is preferably either a sample of a control signal for the DCO, or a sample of the integrated value of a phase-error signal generated by the phase detector. Also described is a method for compensating the frequency pulling in a TDD or TDMA radio transceiver. The transceiver preferably receives data frames that have a preamble followed by a payload portion that holds the transmitted data. The method includes steps of (a) performing a carrier recovery during the preamble of a received frame, (b) storing a digital word indicative of a recovered carrier frequency at the end of the preamble, (c) continuing the carrier recovery during the payload portion of the received frame, (d) using the stored digital word to set an initial frequency for carrier recovery at the start of a subsequent frame, and (e) repeating said steps (a)-(d) for each frame in the series of data frames.
摘要:
A receiver includes a main loop (222) having a main VCO (210) and a secondary loop (224) having a secondary VCO (216). The receiver momentarily phase locks an incoming RF signal (228), and then samples and stores a correction voltage (240) being applied to the main VCO (210). The main loop (222) is then put into a non-phase locked mode of operation and the stored correction voltage is applied through a receive automatic tuning circuit (218) to the main VCO (210) for the duration of the incoming RF signal (228). This effectively calibrates the LO frequency (230) of the receiver to the incoming RF signal frequency (228).
摘要:
A frequency synthesizer of the phase locked loop type and particularly useful for frequency hopping applications includes means (8) for achieving fast frequency and phase lock. In one embodiment the synthesizer is steered to a new frequency value by a DAC 10 which controls a VCO (5) input voltage. Subsequently, the phase of the synthesizer output is locked to that of the reference frequency oscillator (1) by resetting the feedback frequency divider (6) at the point in time when a rising edge of the reference frequency is detected. In a second embodiment, rapid frequency and phase lock is achieved by resetting the feedback frequency divider (6) on every rising edge of the reference frequency while the feedback loop is disabled, until the detected phase difference between the reference frequency and the divided VCO frequency reaches a minimum value.
摘要:
A clock signal generation apparatus includes a first device for extracting reference information from an input digital signal. An oscillator operates for generating a reference clock signal having a frequency depending on a control signal. A second device connected to the first device and the oscillator operates for generating the control signal to the oscillator in response to the reference clock signal generated by the oscillator and the reference information extracted by the first device, and for locking a phase of the reference clock signal to the reference information. A third device connected to the second device operates for deciding whether or not the phase of the reference clock signal is successfully locked to the reference information. A fourth device connected to the second device, a memory, and the third device operates for storing the control signal generated by the second device into the memory when the third device decides that the phase of the reference clock signal is successfully locked to the reference information. A fifth device connected to the memory, the oscillator, and the second device operates for selecting one of the control signal currently generated by the second device and the control signal stored in the memory, and for feeding the selected control signal to the oscillator.
摘要:
Methods and systems are disclosed for eliminating a phase transient of a controlled frequency oscillator, caused by replacing a first reference signal by a second reference signal when the first reference signal becomes corrupted or otherwise unavailable, and for running a controlled frequency oscillator in a frequency-controlled holdover mode. The contradictory requirements of using a relatively low-cost controlled frequency oscillator tunable over a relatively wide frequency range and achieving high stability of its frequency in holdover mode are satisfied.
摘要:
Methods and systems are disclosed for eliminating a phase transient of a controlled frequency oscillator. caused by replacing a first reference signal by a second reference signal when the first reference signal becomes corrupted or otherwise unavailable, and for running a controlled frequency oscillator in a frequency-controlled holdover mode. The contradictory requirements of using a relatively low-cost controlled frequency oscillator tunable over a relatively wide frequency range and achieving high stability of its frequency in holdover mode are satisfied.
摘要:
A frequency standard generator includes a voltage controlled crystal oscillator (VCXO) for generating high stability output signal, a radio wave receiver to receive a radio wave which includes a high accuracy reference time signal, a time interval measuring circuit which measures a phase difference between the reference time signal and the output signal of the VCXO; a frequency control processor which determines control data based on the phase difference data to phase lock the output signal of the VCXO to the reference time signal, a frequency deviation data generator for compiling the phase difference data to obtain frequency deviation trend data of the VCXO, and a compensation data generator for generating compensation data based on the frequency deviation trend data to compensate frequency changes in said VCXO when the reference time signal is unavailable.