Abstract:
An ion selective electrode (ISE) includes an electrode body or housing having an ion selective membrane located at one end thereof and an indicator electrode formed at or adjacent to the ion selective membrane. A sealed vessel is disposed inside the electrode body, the sealed vessel holding an electrically conductive solution and a reference electrode conductor, wherein a portion of the reference electrode conductor is submerged in the electrically conductive solution. The ISE includes a conductive member having a proximal end and a distal end, wherein the proximal end of the conductive member terminates inside the sealed vessel and the distal end terminates outside the housing. The construction of the ISE keeps the reference electrode separate from the indicator electrode. Electrons are passed to the reference electrode via the conductive member obviating the need for a salt bridge. Importantly, no reference electrode is needed that connects to the inner membrane surface. The ISE operates on the double capacitor mechanism which is fundamentally different from the conventional Nernst redox reactions described in the prior art.
Abstract:
The disclosure provides monolithic electrodes including a substrate defining a walled cavity having a floor, an electrically conductive cathode layer overlaying the cavity floor, an electrically conductive contact pad overlaying the substrate, an electrically conductive via in electrical communication with the cathode layer and the contact pad, and a porous membrane layer overlaying the cavity and defining a chamber formed by the porous membrane layer, the walled cavity, and the cavity floor. The disclosure also provides pH transducers including monolithic indicator and reference electrodes, and methods of making and using monolithic pH electrodes and transducers.
Abstract:
A method of operating a gas sensor is disclosed, wherein the sensor includes a pumping electrode configuration and a measuring electrode configuration, and wherein the method includes operating the sensor in a first mode in which a first, lower pumping potential sufficient to electrochemically remove an interfering compound from the sensor without electrochemically removing the analyte from the sensor is applied across the pumping electrode configuration and a measuring potential sufficient to electrochemically remove the analyte from the sensor is applied across the measuring electrode configuration; and operating the sensor in a second mode in which a second, higher pumping potential sufficient to electrochemically remove the analyte from the sensor is applied to the pumping electrode configuration.
Abstract:
In one embodiment, a gas sensor element comprises: an electrolyte disposed between and in ionic communication with a first electrode and a second electrode; and a protective layer disposed adjacent to the first electrode. The protective layer comprises a catalytic coating comprising a reducible support material, a catalyst, and a water activator material. The catalyst coating is capable of converting an oxygen consuming species in a gas to an oxygen donating species.
Abstract:
In a sensor diagnosis process, a controller for controlling an NOx gas sensor performs processing of changing the oxygen partial pressure in a second measurement chamber by changing the oxygen partial pressure in a first measurement chamber (S190), processing of detecting a current flowing through a second pump cell before the change of the oxygen partial pressure (S180), and processing of detecting a current flowing through the second pump cell after the change of the oxygen partial pressure (S230). Furthermore, the controller performs processing of judging whether or not the ratio between the current values detected by the respective current detecting unit falls within an allowable range, judging that the second pump cell 113 is in a normal state if the ratio between the current values falls within the allowable range, and judging that the second pump cell 113 is in a deteriorated state if the ratio between the current values is out of the allowable range (S240 and S250).
Abstract:
Methods and apparatus for electrochemically determining an analyte concentration value in a physiological sample are disclosed. The methods include using a test strip in which two time-current transients are measured by a meter electrically connected to an electrochemical test strip. Integrative current values are derived from the time-current transients and used in the calculation of analyte concentration.
Abstract:
The invention is a redox control and monitoring platform that is to be used in conduction with another detection scheme. The platform includes a portion of an electrochemical control. The electrochemical control can be operated to control and measure the redox environment of a sample. The electrochemical control can be provided in a multiplicity of test regions to allow high throughput analysis of a multiplicity of samples. The present method and system allows the determination of the effect of the change in redox environment on the binding or other activity of the species in the sample that is directly affected by the redox environment.
Abstract:
The invention concerns a method for detecting at least one specific interaction between probe molecules and target biomiolecules fixed to at least one active zone of a sensor. Said sensor consists of an array of field-effect transistors (T1, T2,), each of which has a gate region constituting an active zone (3) whereon said specific interaction is to be detected.
Abstract:
Apparatus and methods for measuring gas component concentrations are disclosed. The method includes measuring a total gas concentration, including a first gaseous component and a second gaseous component, in an atmosphere with a gas sensor. The gas sensor includes a first cell and a second cell. The first cell is electrically coupled to a pump controller and the second cell is electrically coupled to a sense controller. The pump controller and sense controller are then switched such that the pump controller is electrically coupled to the second cell and the sense controller is electrically coupled to the first cell. Then a first gaseous component concentration is measured.
Abstract:
The present invention relates to an electrochemical method for detecting a target polynucleotide. An electrode comprising an electrode surface is provided. The electrode surface includes at least one probe molecule reverisbly immobilized with respect to the electrode surface. A first electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The electrode surface is contacted with a liquid comprising the target polynucleotide. Upon the contacting step, at least some of the probe molecule immobilized with respect to the electrode surface dissociates therefrom. A second electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The presence of the target polynucleotide is determined at least partially on the basis of the first and second electrochemical signals.