Abstract:
A neutron generator comprising a target (16) which is struck by a hydrogen isotope ion beam and which is formed by a structure comprising a thin absorbing active layer (19) deposited on a carrier layer (18). In accordance with the invention, on the two above layers there is deposited a stack of active layers (21, 23, 25, 27) which are identical to the layer (19) and which are separated from one another by diffusion barriers (20, 22, 24, 26, respectively). The thickness of each of said active layers is in the order of the penetration depth of the deuterium ions striking the target.
Abstract:
A lightweight, low energy neutron radiography inspection device (20) includes an inspection head (22) with a sealed tube neutron generator (44) using a deuterium target (110) for emitting relatively low energy neutrons. A moderating fluid (140) within the head is used to thermalize the neutrons emitted from the neutron source. A collimator (40) directs the thermalized neutrons to produce a thermal neutron radiograph. The relatively low energy neutrons produced by the neutron generator permit the reduction in volume of moderating fluid required and thus the use of a smaller, more maneuverable, inspection head.
Abstract:
The proposed ionizing radiation generator comprises an ionizing radiation emitter including a resonance transformer whose field winding is arranged near the low-voltage end of the step-up winding, electrically associated with the electrically conducting housing of the resonance transformer. The emitter also includes an accelerating tube whose high-voltage electrode is coupled to the high-voltage end of the step-up winding of the resonance transformer and attached to one of the ends of the tubular insulator of the accelerating tube which accommodates the step-up winding. The low-voltage electrode of the accelerating tube is electrically associated with the housing, while a source of charged particles is arranged in the evacuated inner space of the accelerating tube disposed between the housing and the tubular insulator, one of the electrodes of the tube being electrically associated with the charged particle source.
Abstract:
Means and method for energizing and regulating a neutron generator tube having a target, an ion source and a replenisher includes providing a negative high voltage to the target and monitoring the target current. A constant current from a constant current source is divided into a shunt current and a replenisher current in accordance with the target current. The replenisher current is applied to the replenisher in a neutron generator tube so as to control the neutron output in accordance with the target current.
Abstract:
A neutron source for medical therapy purposes comprising a cyclotron comprising an iron metal housing acting as a magnetic yoke, magnetic shield, radiation shield, and vacuum vessel, a pair of superconducting coils mounted in a cavity in the housing said coils being cooled to superconducting temperatures by passage of a refrigerant fluid therethrough and connected to an electrical energy source such that a high current flows in the coils producing an intense magnetic field inwardly between the coils, an ion orbiting region defined by pairs of sectoral-shaped RF electrode structures energized at an RF frequency and focussing flutter poles mounted in the intense magnetic field between coils, a source of ions positioned centrally of the ion orbiting region to provide a stream of ions that will be orbited in the orbit region; an ion target positioned internally of said iron housing at an outer position in the orbit region such that orbiting ions strike the target and produce neutrons; a channel formed in the iron housing from the target to the exterior for passage of the beam of neutrons formed at the target, said channel acting as a beam collimator; and a mounting structure for movably mounting the cyclotron and target such that the neutron beam produced can be employed at more than one position.
Abstract:
Disclosed is a neutron generator in which a gas (such as a heavy isotope of hydrogen) or a mixture of gases, is ionized by any convenient means such as exposure to a magnetically stabilized arc. The ions are directed to an accelerator and the resulting high velocity ion stream is caused to impinge on a target. The interaction of the ion beam with the target material soon builds up a high density of gas in the target surface which, in turn, interacts with the incoming beam to produce an intense isotropic neutron output from the fusion of the isotopes.
Abstract:
In the supply circuit for an ion accelerator having an ion source and an ion extractor electrode, the supply circuit including an energizing supply for the ion source and a power supply for the extractor electrode, there is provided a negative feedback loop connected to cause the extractor electrode current to control the energizing supply output in a sense to maintain constant the extractor current. The described embodiment is a neutron generator tube having a plasma ion source energized by a radio-frequency supply.
Abstract:
Apparatus for ionizing gases at very low pressures comprising inner and outer electrodes wherein the inner electrode is substantially circular in cross section and the outer electrode surrounding the inner electrode may be other than a figure of revolution or may be eccentrically positioned with respect to the inner electrode which inner electrode is less in length than two times the length of the surrounding outer electrode and is spaced therefrom a distance which is greater than the diameter of the inner electrode for a distance of not less than two-thirds the length of the surrounding outer electrode.