Abstract:
A high energy discharge apparatus uses a generally electron transparent thin foil anode of various configuration which is arranged parallel to and spaced apart between a pair of cathodes, and energized to create a potential difference between the anodes and cathodes causing electrons to be reflected back and forth through the foil anode with the concurrent discharge of ions being accelerated to the cathode.
Abstract:
Apparatus for ionizing gases at very low pressures comprising inner and outer electrodes wherein the inner electrode is substantially circular in cross section and the outer electrode surrounding the inner electrode may be other than a figure of revolution or may be eccentrically positioned with respect to the inner electrode which inner electrode is less in length than two times the length of the surrounding outer electrode and is spaced therefrom a distance which is greater than the diameter of the inner electrode for a distance of not less than two-thirds the length of the surrounding outer electrode.
Abstract:
Ion accelerating devices including connection mechanisms with integrated shielding electrode and related methods are disclosed. According to an embodiment, an ion accelerating device of an ion implantation system comprises: a first element; a first connection system within the first element, the first connection system including a first connector and a first encapsulated shielding electrode around the first connector; and a second connection system within a second element other than the first element, the second connection system being coupled to the first connector; wherein the first encapsulated shielding electrode includes a first shielding portion adjacent to a first interface surface of the first element where the second connection system interfaces with the first element, in a cross-sectional view, the first shielding portion being substantially U-shaped.
Abstract:
An ion source in which ions of normally solid materials are easily produced. A plasma is generated in a gas adjacent the solid material from which ions are to be produced. The solid is negatively charged and the gas plasma ions bombard the solid, sputtering off ions of the solid. This is accomplished through the use of a Penning discharge with a cold cathode-type source and a centrally positioned and negatively charged dynode upon which the solid material is mounted, the dynode being electrically connected to the cathode and provided with an exit slit through which the metallic ions are extracted from plasma potential.
Abstract:
Ion implantation systems and beamlines therefor are disclosed, in which a ribbon beam of a relatively large aspect ratio is mass analyzed and collimated to provide a mass analyzed ribbon beam for use in implanting one or more workpieces. The beamline system comprises two similar magnets, where the first magnet mass analyzes the ribbon beam to provide an intermediate mass analyzed ion beam, and the second magnet collimates the intermediate beam to provide a uniform mass analyzed ribbon beam to an end station. The symmetrical system provides equidistant beam trajectories for ions across the elongated beam width so as to mitigate non-linearities in the beam transport through the system, such that the resultant mass analyzed beam is highly uniform.
Abstract:
An ion source comprising a discharge chamber that has a gas inlet and an ion exit, two pairs of cathodes that are disposed on the side surfaces of said discharge chamber, two pairs of anodes, each anode being disposed in a space between the adjacent cathodes, and a pair of solenoids that are wrapped around one pair of cathodes so as to be mutually repulsive magnetically, wherein there is no magnetic field in the central axis of the other pair of cathodes around which no solenoids are wrapped.
Abstract:
An improved Wire-Ion-Plasma Electron-gun (WIP E-gun) is disclosed, having a very rapid electron beam current interruption capability. An auxiliary grid is employed to provide a potential barrier to the reservoir of plasma ions in the ionization chamber, thereby containing these ions in the chamber after the wire anode is turned "OFF". The E-gun current fall time is reduced to the time required for the plasma potential to fall in the ionization chamber after the wire anode is turned "OFF". The WIP E-gun current fall time is reduced, from greater than fifteen microseconds for devices not employing the invention, to less than two microseconds.