Abstract:
An operating method is provided for a cryo-compressed tank for supplying cryogenic hydrogen to a consumer of a motor vehicle under supercritical pressure at 13 bar or more. In order to compensate for pressure loss resulting from hydrogen removal, the removed hydrogen that has been heated in a heat exchanger is conveyed to a heat exchanger, provided in the cryo-compressed tank, by way of a tank pressure regulating valve and a branch line, which branches off of a supply line leading to the consumer. After flowing through the heat exchanger, it is introduced into the supply line downstream of the branching off of the branch line. Over a period of time that significantly exceeds the cycle times of a conventional frequency valve, either the removed amount of hydrogen is guided without limitation into the heat exchanger, provided in the cryo-compressed tank, the tank pressure regulating valve being completely open, or no return of the heated hydrogen into the heat exchanger occurs at all. Downstream of the branching off of the branch line, the supply line has a pressure regulating unit, which ensures that irrespective of the changes in the pressure in the supply line caused upstream of the pressure regulating unit by switching the tank pressure regulating valve, a sufficient and continuous supply of hydrogen to the consumer at the pressure required is guaranteed.
Abstract:
A vessel for containing liquefied petroleum gas and a method for loading a semitrailer with a plurality of vessels is disclosed. The vessel may include a tank with an outside diameter that is greater than thirty inches and less than thirty-four inches. The tank may be configured to contain at least 119 water gallons, and may be further configured to contain liquefied petroleum gas.
Abstract:
A mounting assembly for holding and moving a propane cylinder between a first operational position and a second lower loading/unloading position with respect to a support structure of a forklift is provided. The mounting assembly includes a base member adapted for connection to the forklift support structure, a cradle for supporting the cylinder between the first and second positions, and first and second pivot arms having a first end pivotally connected to the base member and a second end pivotally connected to the cradle. In the first position, the cradle is in a generally horizontal orientation. In the second position, the cradle is in a generally vertical orientation. Angular movement of the first and second pivot arms causes rotation of the cradle between the generally horizontal and generally vertical orientations.
Abstract:
A fluid storage and delivery apparatus may include a fluid container, a first apparatus component, and a housing. One or more support members may be coupled to the housing and configured to secure the first apparatus component physically separate from the fluid container. The first apparatus component may be indirectly coupled to the fluid container by one or more coupling members at least partially defining a fluid passageway between the first apparatus component and the fluid container.
Abstract:
A flat inner container (3), especially an internal tank for a road vehicle, which is surrounded by an outer container (1) and is used for receiving a cryogenic liquid, particularly a fuel. The inner container (3) comprises a combination of the following features: a longitudinally extending monolithic base (4) with a top wall (5) and a bottom wall (6) which are connected to also longitudinally extending sidewalls (7), and with at least two longitudinally extending, substantially straight webs (9) that connect the bottom wall (6) to the top wall (5) so as to form at least one longitudinally extending chamber (10) which is arranged between the webs, extends along the entire length of the base (4) as well as from the bottom wall (6) to the top wall (5), and has a predetermined width between the webs; and at least two caps (11) which tightly seal the two open ends of the base (4) at the periphery; the top wall and/or the bottom wall is/are provided with an arch relative to a planar reference top wall and/or reference bottom wall, the distance of the arch between the inner contour of the top wall and/or the bottom wall and the planar reference top wall and/or reference bottom wall amounting to less than 30 percent of the width of the chamber in the center between the webs.
Abstract:
The present invention provides for an integrated valve regulator assembly that comprises an integral body having a base portion that includes an axis for mounting on and coaxially with the neck portion of a pressurized source vessel and an assembly outlet, a defined internal passage in the integral body that extends through and between the base portion of the integral body and the assembly outlet, a sub-atmospheric pressure regulator assembled within the integral body of the integrated valve regulator assembly, an isolation valve positioned within the defined internal passage of the integral body and located downstream from and in communication with the sub-atmospheric pressure regulator, and a filling port disposed between the axis for mounting on and coaxially with the neck portion of the pressurized source vessel and the sub-atmospheric pressure regulator. The present invention further provides for a system for the controlled storage and dispensing of a hazardous material at sub-atmospheric pressure that comprises a pressurized source vessel and the integrated valve regulator assembly of the present invention. The present invention further provides for an additional integrated valve regulator assembly as described with the exception that the pressure regulator utilized is for super-atmospheric pressure conditions and also a system that comprises a pressurized source vessel and the integrated valve regulator assembly that includes a super-atmospheric pressure regulator.
Abstract:
A vehicle and a fuel storage system for a vehicle are provided. A frame defining a perimeter structure and having first and second ends, and a generally open central interior portion, is configured to receive any one of a plurality of vehicle bodies in a body-on-frame vehicle architecture. A fuel cell arrangement is disposed adjacent one end of the frame, and a fuel storage tank is disposed in the central interior portion of the frame, along a length of the frame. The fuel storage tank provides a source of fuel for the fuel cell, and also acts as a fuel delivery conduit from one end of the frame to the other. The fuel storage system can include a non-rigid mounting structure for the fuel tank, thereby substantially isolating the fuel tank from movements of the vehicle frame.
Abstract:
In a holding device and a motor vehicle including such a holding device for gas cylinders, comprising a frame formed by two longitudinal members interconnected at opposite ends by cross-members and supporting a first gas cylinder mounted to the longitudinal members by straps extending around the first gas cylinder, a profiled support rail is disposed on each of the straps and has a first profile fitting the first gas cylinder and at the opposite side a second profile for accommodating a second gas cylinder which is also mounted by straps to the support rail offset sidewardly so that the two cylinders are disposed laterally displaced to facilitate accommodation thereof adjacent an inclined rear seat back wall in the trunk of the motor vehicle.
Abstract:
An integrated ship mounted system for loading a gas stream, separating heavier hydrocarbons, compressing the gas, cooling the gas, mixing the gas with a desiccant, blending it with a liquid carrier or solvent, and then cooling the mix to processing, storage and transportation conditions. After transporting the product to its destination, a hydrocarbon processing train and liquid displacement method is provided to unload the liquid from the pipeline and storage system, separate the liquid carrier, and transfer the gas stream to a storage or transmission system.
Abstract:
The invention relates to a method for producing a reservoir, in particular a cryogenic reservoir, provided with two concentric envelops (1, 3), i.e. the internal (1) and external (3), respectively, defining an interwall space (2) therebetween, wherein said internal space (2) is exposable to a reduced operational pressure and the internal envelop (1) is exposable to an internal positive process. The inventive method comprises a first step for calculating at least one minimum dimension characteristic of the internal envelop (1) for satisfying at least one first safety stress, a second step for calculating at least one minimum dimension characteristic of the external envelop (3) for satisfying at least one second safety stress, steps for producing the first and second envelops (1, 3) corresponding to the respective minimum dimensions calculated at the first and second steps, wherein said invention is characterized in that the second safety stress is the pressure resistance and burst resistance of the external envelop (3) for the process pressure specified for the internal envelop according to at least one standard or design rule.