Abstract:
This method is for controlling a turbine for a hydraulic power plant comprising at least one reservoir, the turbine comprising a hub having several blades. The method includes running the turbine in at least two different operating modes including a direct power-generating mode and an indirect power-generating mode, when a flow of water fills the reservoir or when the reservoir is emptied.
Abstract:
This platform provides access to a hydraulic machine via a suction tube. This hydraulic machine belongs to an installation for converting hydraulic energy into mechanical or electrical energy, or reciprocally. The platform includes a load-bearing element designed to slide along a longitudinal axis in order to enter an opening in the suction tube, said load-bearing element having an extremity that is designed to be immobilized in the suction tube and floor elements that are placed on the load-bearing element. At least some of the floor elements are articulated with the load-bearing element about axes substantially parallel to the longitudinal axis, while these floor elements can be rotated about these axes between a folded configuration and a deployed configuration and define at least a portion of a floor of the platform.
Abstract:
A method of constructing an electrical machine by assembling a first structure (one of a rotor and stator structure) and a second structure (the other of the rotor and stator structure), along with a plurality of first elements (one of a plurality of permanent magnet elements and a plurality of winding elements) and a plurality of second elements (the other plurality of the permanent magnet elements and winding elements). The first elements are attached to a rim of the first structure, and the second elements are attached to the first elements, this attachment being caused by a magnetic attraction. The first structure is assembled with the second structure such that the second elements are positioned for a posterior attachment to a rim of the second structure, and the second elements are attached to the rim of the second structure.
Abstract:
In a first aspect, a method is provided for manufacturing a permanent magnet module for a generator by using a mold with a resin inlet and a heating system for heating the inside of the mold. The method comprises placing inside the mold a module base with one or more receptacles for receiving permanent magnets, and inserting permanent magnets in the receptacles of the module base. The method further comprises closing the mold having in its inside the module base with inserted permanent magnets, and introducing resin into the closed mold through the inlet of the mold. The method still further comprises causing the heating system to operate for at least partially curing the resin. In a second aspect, permanent magnet modules are provided manufactured by performing any of the previous methods of manufacturing a permanent magnet module.
Abstract:
A method is disclosed for manufacturing a rotating part which belongs to a hydraulic machine of an installation for converting hydraulic energy into electrical or mechanical energy. This rotating part includes blades distributed about an axis of rotation of the rotating part and extending from a leading edge to a trailing edge. This method can include manufacturing, in steel, a first part of each blade, which defines the leading edge thereof, manufacturing a second part of the blade in a material other than steel and attaching this to the first part of the blade so as to form a trailing edge.
Abstract:
This Francis-type runner for a turbine includes a crown, a band and blades the number of which is not a prime number. These blades are made as one piece and extend between the crown and the band, and between a leading edge and a trailing edge each trailing edge has its concave face facing upstream over its entire length. In addition, first blades are uniformly distributed about a central axis of the runner in a number equal to a divisor of the total number of blades. Each of these first blades has a point of attachment of its trailing edge to the crown that is lowered by comparison with the point of attachment of the trailing edge to the crown of second blades, which are likewise part of the runner. Moreover, the ratio between, on the one hand, the radius of a circle centered on the central axis of the runner, perpendicular to this axis and passing through the point of attachment of the trailing edge of a first blade to the crown and, on the other hand, the radius of a circle centered on the central axis of the runner perpendicular to this axis and passing through the point of attachment of the trailing edge of the same blade to the band is less 0.15.
Abstract:
Wind turbine blade comprising a spar, a plurality of ribs rotatably mounted on said spar, and a rotating means adapted to rotate at least two consecutive ribs independently of each other. The blade can thus be operated so as to rotate at least two consecutive ribs independently of each other, although it is also possible to jointly rotate all the ribs.
Abstract:
Methods of operating a variable speed wind turbine as a function of a wind speed, the wind turbine having a rotor with a plurality of blades, a generator having a rated output power, and one or more pitch mechanisms for rotating the blades around their longitudinal axis, and a system for varying a torque of the generator. The methods comprise a sub-nominal zone of operation for wind speeds below a nominal wind speed and a supra-nominal zone of operation for wind speeds at or above the nominal wind speed, wherein at wind speeds at or near the nominal wind speed, the generator is allowed to generate more than its rated output power for a limited period of time. Also disclosed are wind turbines and wind farms adapted to perform these methods.
Abstract:
A wind turbine including a rotor, a nacelle, a support structure for the nacelle and at least one wind sensing apparatus mounted on the support structure.
Abstract:
A wind turbine that includes a rotor and a generator is described. The rotor includes a rotor hub that is rotatably mounted on a frame and one or more rotor blades. The generator includes a generator stator and a generator rotor with a carrying structure that carries magnetic or electromagnetic elements. One or more circumferentially arranged substantially axial protrusions that extend into the generator rotor carrying structure are attached to the rotor. Flexible couplings are arranged between one or more of the axial protrusions and the carrying structure.