Abstract:
A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer.
Abstract:
A method of crystallizing an amorphous silicon layer, a method of manufacturing a thin film transistor using the same, and a thin film transistor using the manufacturing method, the crystallizing method including: forming an amorphous silicon layer; positioning crystallization catalyst particles on the amorphous silicon layer to be separated from each other; selectively removing the crystallization catalyst particles from a portion of the amorphous silicon layer; and crystallizing the amorphous silicon layer by a heat treatment.
Abstract:
A substrate including a thin film transistor, the substrate including an active layer disposed on the substrate, the active layer including a channel area and source and drain areas, a gate electrode disposed on the active layer, the channel area corresponding to the gate electrode, a gate insulating layer interposed between the active layer and the gate electrode, an interlayer insulating layer disposed to cover the active layer and the gate electrode, the interlayer insulating layer having first and second contact holes partially exposing the active layer, source and drain electrodes disposed on the interlayer insulating layer, the source and drain areas corresponding to the source and drain electrodes, and ohmic contact layers, the ohmic contact layers being interposed between the interlayer insulating layer and the source and drain electrodes, and contacting the source and drain areas through the first and second contact holes.
Abstract:
Provided are a file mutation method and a system using file section information and mutation rules. The file mutation system includes: a file section information extraction module obtaining file section information with respect to a sample file of a known file format; a file section information production module producing file section information with respect to a sample file of an unknown format; a mutation rule production module receiving a user input that a mutation rule is applied and producing a mutation rule, the mutation rule defining a mutation function that is to be applied to each data type; and a file mutation module receiving the sample file and producing a plurality of test case files that are created by mutating the sample file through the file section information processed in the file section information extraction module and the file section information production module and the mutation rule from the mutation rule production module.
Abstract:
A mobile terminal includes a display unit configured to display content on a screen, a wireless communication unit configured to communicate with at least one external terminal, and a control unit configured to display a menu list including a transmission menu of the content when a command for displaying the menu list related to the content is input, and control the communication unit to transmit the content to the external terminal when the transmission menu is selected.
Abstract:
A radio frequency identification reader and a radio frequency identification tag that use an ultrahigh frequency band, and action methods of the radio frequency identification reader and the radio frequency identification tag. The radio frequency identification reader includes: a data generator generating data to be transmitted to a radio frequency identification tag; if a command to control the radio frequency identification tag has to be authenticated, a reader controller controlling the data generator to generate the data including an authentication code; and a reader transmitter transmitting the data to the radio frequency identification tag. As a result, securing of communications of a specific command between the radio frequency identification reader and the radio frequency identification tag can be reinforced.
Abstract:
Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target. A distance difference between a linear distance, which is a distance between a substrate loaded on the substrate holder and the metal target, and a length of the first shield is less than 3 cm.
Abstract:
An RFID reader control system and method is provided. A protocol for controlling an RFID reader and an RFID reader control unit of a mobile phone is defined. Messages, information, commands, responses, and notification are constructed and transmitted between the RFID reader and the RFID reader control unit.
Abstract:
A substrate processing apparatus that forms thin films on a plurality of substrates and thermally processes the substrates, by uniformly heating the substrates. The substrate processing apparatus includes a processing chamber, a boat in which substrates are stacked, an external heater located outside of the processing chamber, a feeder to move the boat into and out of the processing chamber, a lower heater located below the feeder, and a central heater located in the center of the boat.
Abstract:
A multilayered coplanar waveguide (CPW) filter unit and a method of manufacturing the same are provided. A plate having a capacitance element is formed on or below a CPW layer including a signal line for transmitting a signal and a ground plane. As the filter unit has a multilayered structure, characteristic impedance may be reduced without increasing the width of the signal line. Where an inductor line is inserted between the signal line and the plate, a clear frequency response curve may be obtained without performing an additional process or increasing the area of the filter unit.