摘要:
An embodiment of the present invention includes a method of forming a nonvolatile phase change memory (PCM) cell. This method includes forming at least one bottom electrode; forming at least one phase change material layer on at least a portion of an upper surface of the bottom electrode; forming at least one heater layer on at least a portion of an upper surface of the phase change material layer; and shaping the heater layer into a tapered shape, such that an upper surface of the heater layer has a cross-sectional width that is longer than a cross-sectional width of a bottom surface of the heater layer contacting the phase change material layer.Another embodiment of the present invention includes a phase change memory (PCM) structure configurable for use as a nonvolatile storage element. The element includes at least one bottom electrode; at least one phase change material layer on at least a portion of an upper surface of the bottom electrode; and at least one heater layer on at least a portion of an upper surface of the phase change material layer, wherein the heater layer has a tapered shape such that an upper surface of the heater layer has a cross-sectional width that is longer than a cross-sectional width of a bottom surface of the heater layer contacting the phase change material layer.
摘要:
A memory device comprising a first pan-shaped electrode having a side wall with a top side, a second pan-shaped electrode having a side wall with a top side and an insulating wall between the first side wall and the second side wall. The insulating wall has a thickness between the first and second side walls near the respective top sides. A bridge of memory material crosses the insulating wall, and defines an inter-electrode path between the first and second electrodes across the insulating wall. An array of such memory cells is provided. The bridges of memory material have sub-lithographic dimensions.
摘要:
Thin-film phase-change memories having small phase-change switching volume formed by overlapping thin films. Exemplary embodiments include a phase-change memory element, including a first phase change layer having a resistance, a second phase change layer having a resistance, an insulating layer disposed between the first and second phase change layers; and a third phase change layer having a resistance, and coupled to each of the first and second phase change layers, bridging the insulating layer and electrically coupling the first and second phase change layers, wherein the resistance of the third phase change layer is greater than both the resistance of the first phase change layer and the second phase change layer.
摘要:
A memory device with a thin heater forms a programmable resistive change region in a sub-lithographic pillar of programmable resistive change material (“memory material”), where the heater is formed within the pillar between the top electrode and the programmable material. The device includes a dielectric material layer and vertically separated top and bottom electrodes having mutually opposed contact surfaces. A sub-lithographic pillar of memory material, which in a particular embodiment is a chalcogenide, is encased within the dielectric material layer. A heater between the pillar of programmable resistive material and the top electrode forms an active region, or programmable resistive change region, next to the heater when the memory device is programmed or reset.
摘要:
A memory device has a first electrode, a second electrode, and memory material defining an inter-electrode current path between the first electrode and the second electrode. A gap is formed by shrinkage of the shrinkable material between the memory material and a shrinkable material next to the memory material.
摘要:
A method for manufacturing a mushroom-cell type phase change memory is based upon manufacturing a pillar of bottom electrode material upon a substrate including an array of conductive contacts in electrical communication with access circuitry. A layer of electrode material is deposited making reliable electrical contact with the array of conductive contacts. Electrode material is etched to form a pattern of electrode pillars on corresponding conductive contacts. Next, a dielectric material is deposited over the pattern and planarized to provide an electrode surface exposing top surfaces of the electrode pillars. Next, a layer of programmable resistive material, such as a chalcogenide or other phase change material, is deposited, followed by deposition of a layer of a top electrode material. A device including bottom electrode pillars with larger bottom surfaces than top surfaces is described.
摘要:
A memory device described herein includes a bit line having a top surface and a plurality of vias. The device includes a plurality of first electrodes each having top surfaces coplanar with the top surface of the bit line, the first electrodes extending through corresponding vias in the bit line. An insulating member is within each via and has an annular shape with a thickness between the corresponding first electrode and a portion of the bit line acting as a second electrode. A layer of memory material extends across the insulating members to contact the top surfaces of the bit line and the first electrodes.
摘要:
Memory cells are described along with methods for manufacturing. A memory cell as described herein includes a bottom electrode, a memory element and a side electrode. The bottom electrode contacts the memory element at a first contact surface on the bottom of the memory element. The side electrode contacts the memory element at a second contact surface on the side of the memory element, where the second contact surface on the side faces laterally relative to the first contact surface on the bottom.
摘要:
A method, system and computer program product for programming a plurality of programmable resistive memory cells is disclosed. The method comprises executing a first process to program input data, including setting up bias voltages on bit lines and word lines on the memory cells, determining if the input data for each memory cell corresponds to a set state and then setting such cells to a set state. The method further comprises executing a second process to program input data, determining if the input data for each memory cell corresponds to a reset state and then resetting such cells to a reset state.
摘要:
A method, system and computer program product for programming a plurality of programmable resistive memory cells is disclosed. The method comprises executing the following for each memory cell: reading a resistance of a memory cell and reading input data corresponding to the memory cell. The method further comprises executing the following for each memory cell: programming the memory cell to a lower resistance (SET) state if the resistance is at a higher resistance state and the input data corresponds to a first (SET) state and programming the memory cell to a higher resistance (RESET) state if the resistance is at a lower resistance state and the input data corresponds to a second (RESET) state.