摘要:
A catheter system and method are provided which change the temperature of a fluid, such as blood, by heat transfer. Selective cooling or heating of an organ may be performed by changing the temperature of the blood feeding the organ. The catheter system includes an inlet lumen and an outlet lumen structured and arranged to carry a working fluid having a temperature different from the adjacent blood. The outlet lumen is configured to induce turbulence in the adjacent fluid passing adjacent the outlet lumen.
摘要:
A selective organ heat transfer device with deep irregularities in a turbulence-inducing exterior surface. The device can have a plurality of elongated, articulated segments, each having a turbulence-inducing exterior surface. A flexible joint connects adjacent elongated, articulated segments. An inner lumen is disposed within the heat transfer segments. The inner lumen is capable of transporting a pressurized working fluid to a distal end of the heat transfer element. The irregularities may be grooves, and the grooves have a curved termination point which directs blood along a direction having a component perpendicular to the axis of the segments, thereby enhancing turbulence and heat transfer.
摘要:
A method and apparatus for performing hypothermia of a selected organ without significant effect on surrounding organs or other tissues. A flexible coaxial catheter is inserted through the vascular system of a patient to place the distal tip of the catheter in an artery feeding the selected organ. A chilled perfluorocarbon fluid is pumped through an insulated inner supply conduit of the catheter to cool a flexible bellows shaped heat transfer element in the distal tip of the catheter. The heat transfer bellows cools the blood flowing through the artery, to cool the selected organ, distal to the tip of the catheter.
摘要:
The present invention involves a selective organ heat transfer device having a flexible coaxial catheter capable of insertion into a selected feeding artery in the vascular system of a patient. A heat transfer element is attached to a distal portion of the catheter as well as a turbulence-enhancing element which is adapted to enhance turbulent blood flow along the heat transfer element. The heat transfer element may include the turbulence-enhancing element and/or a turbulence-enhancing element may be located proximal of the heat transfer element.
摘要:
A heat transfer device has first and second elongated, articulated segments, each having a turbulence-inducing exterior surface. A flexible joint connects the first and second elongated, articulated segments. An inner coaxial lumen is disposed within the first and second elongated, articulated segments. The inner coaxial lumen is capable of transporting a pressurized working fluid to a distal end of the first elongated, articulated segment.
摘要:
A microminiature laminated heat exchanger for use in a cryogenic probe, and a method of manufacture. The heat exchanger has high and low pressure flow patterns etched into oxygen free copper sheets, with the flow patterns being tortuous paths promoting turbulent flow. The sheets containing the flow patterns are bonded into a laminated assembly in the shape of a cylinder, with a high pressure inlet and a low pressure outlet in a first end, and a high pressure outlet and a low pressure inlet in a second end. The high pressure flow path lies alongside the low pressure flow path, with flow in the two paths being in opposite directions, to accomplish counterflow heat exchange.
摘要:
A method is described for the treatment of obesity or other disorders, by electrical activation or inhibition of the sympathetic nervous system. This activation or inhibition can be accomplished by electrically stimulating the greater splanchnic nerve or other portion of the sympathetic nervous system using an implantable pulse generator. This nerve activation can result in reduced food intake and increased energy expenditure. Reduced food intake may occur through a variety of mechanisms that reduce appetite and cause satiety. Increased adrenal gland hormone levels will result in increased energy expenditure. Fat and carbohydrate metabolism, which are also increased by sympathetic nerve activation, will accompany the increased energy expenditure.
摘要:
The present invention provides an enhanced method and device to inhibit or reduce the rate of restenosis following angioplasty or stent placement. The invention involves placing a balloon tipped catheter in the area treated or opened through balloon angioplasty immediately following angioplasty. The balloon, which can have a dual balloon structure, may be delivered through a guiding catheter and over a guidewire already in place from a balloon angioplasty. A fluid such as a perfluorocarbon may be flowed into the balloon to freeze the tissue adjacent the balloon, this cooling being associated with reduction of restenosis. The catheter may also be used to reduce atrial fibrillation by inserting and inflating the balloon such that an exterior surface of the balloon is in contact with at least a partial circumference of the portion of the pulmonary vein adjacent the left atrium.
摘要:
Systems and methods are described for treating metabolic syndrome and/or Type 2 diabetes, and/or one or more of their attendant conditions, by neural stimulation. In one embodiment, an implantable pulse generator is electrically coupled to a peripheral nerve, such as the splanchnic nerve. Neural stimulation configured to either block transmission or stimulate transmission of the peripheral nerve may be used to treat metabolic syndrome and Type 2 diabetes.
摘要:
A method is described for the treatment of obesity or other disorders, by electrical activation or inhibition of the sympathetic nervous system. This activation or inhibition can be accomplished by electrically stimulating the greater splanchnic nerve or other portion of the sympathetic nervous system using an implantable pulse generator. This nerve activation can result in reduced food intake and increased energy expenditure. Reduced food intake may occur through a variety of mechanisms that reduce appetite and cause satiety. Increased adrenal gland hormone levels will result in increased energy expenditure. Fat and carbohydrate metabolism, which are also increased by sympathetic nerve activation, will accompany the increased energy expenditure.