Abstract:
Methods of fabricating a memory unit are provided including forming a plurality of first nanowire structures, each of which includes a first nanowire extending in a first direction parallel to the first substrate and a first electrode layer enclosing the first nanowire, on a first substrate. The first electrode layers are partially removed to form first electrodes beneath the first nanowires. A first insulation layer filling up spaces between structures, each of which includes the first nanowire and the first electrode, is formed on the first substrate. A second electrode layer is formed on the first nanowires and the first insulation layer. A plurality of second nanowires is formed on the second electrode layer, each of which extends in a second direction perpendicular to the first direction. The second electrode layer is partially etched using the second nanowires as an etching mask to form a plurality of second electrodes. Related memory units, methods of fabricating semiconductor devices and semiconductor devices are also provided.
Abstract:
Semiconductor devices include a gate electrode, a gate insulation layer, a first channel layer pattern, a second channel layer pattern and first and second metallic patterns. The gate electrode is on a substrate. The gate insulation layer is on the gate electrode. The first channel layer pattern is on the gate insulation layer, and has a first conductivity level. The second channel layer pattern is on the first channel layer pattern, and has a second conductivity level that is lower than the first conductivity level. The first and second metallic patterns are on the gate insulation layer and contact respective sidewalls of the first and second channel layer patterns.
Abstract:
Non-volatile memory cells employing a transition metal oxide layer as a data storage material layer are provided. The non-volatile memory cells include a lower and upper electrodes overlapped with each other. A transition metal oxide layer pattern is provided between the lower and upper electrodes. The transition metal oxide layer pattern is represented by a chemical formula MxOy. In the chemical formula, the characters “M”, “O”, “x” and “y” indicate transition metal, oxygen, a transitional metal composition and an oxygen composition, respectively. The transition metal oxide layer pattern has excessive transition metal content in comparison to a stabilized transition metal oxide layer pattern. Methods of fabricating the non-volatile memory cells are also provided.
Abstract:
Non-volatile memory devices including a lower electrode formed on a substrate; an active memory material formed on the lower electrode; an upper electrode formed on the active memory material; and an adhesive layer formed in part of a region between the active memory material and the upper electrode.
Abstract:
In a complementary metal-oxide semiconductor (CMOS) transistor and a method of manufacturing the same, a semiconductor channel material having a first conductivity type is provided on a substrate. A first transistor having the first conductivity type and a second transistor having a second conductivity type are positioned on the substrate, respectively. The first transistor includes a first gate positioned on a first surface of the channel material through a medium of a gate insulation layer and a pair of ohmic contacts positioned on a second surface of the channel material and crossing over both side portions of the first gate electrode, respectively. The second transistor includes a second gate positioned on the first surface of the channel material through a medium of the gate insulation layer and a pair of Schottky contacts positioned on the second surface of the channel material and crossing over both side portions of the second gate electrode, respectively.
Abstract:
A thin film transistor includes a layer structure having a gate electrode, a gate insulation layer and a channel layer. A source line may contact the channel layer, and may extend along a direction crossing over the gate electrode. The source line may partially overlap the gate electrode so that both sides of the source line overlapping the gate electrode may be entirely positioned between both sides of the gate electrode. A drain line may make contact with the channel layer and may be spaced apart from the source line by a channel length. The drain line may have a structure symmetrical to that of the source line. Overlap areas among the gate electrode, the source line and the drain line may be reduced, so that the thin film transistor may ensure a high cut-off frequency.
Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
Provided is a ferroelectric memory device. The ferroelectric memory device includes an inorganic channel pattern on a substrate, a source electrode and a drain electrode spaced apart from each other on the substrate and contacting the inorganic channel pattern, a gate electrode disposed adjacent to the inorganic channel pattern, and an organic ferroelectric layer interposed between the inorganic channel pattern and the gate electrode.
Abstract:
A plurality of nanowires is grown on a first substrate in a first direction perpendicular to the first substrate. An insulation layer covering the nanowires is formed on the first substrate to define a nanowire block including the nanowires and the insulation layer. The nanowire block is moved so that each of the nanowires is arranged in a second direction parallel to the first substrate. The insulation layer is partially removed to partially expose the nanowires. A gate line covering the exposed nanowires is formed. Impurities are implanted into portions of the nanowires adjacent to the gate line.
Abstract:
A ferroelectric random access memory (FRAM) includes a semiconductor substrate and an interlayer insulating layer on the substrate. A diffusion preventive layer is on the interlayer insulating layer. The diffusion preventive layer and the interlayer insulating layer have two node contact holes formed therein. Node conductive layer patterns are aligned with the node contact holes, respectively, and are disposed so as to protrude upward from the diffusion preventive layer. Lower electrodes are disposed on the diffusion preventive layer that cover the node conductive layer patterns, respectively. Thicknesses of the lower electrodes are gradually reduced from a line extending from upper surfaces of the node conductive layer patterns toward the diffusion preventive layer.