Abstract:
A hydraulic tensioner includes a piston that is pivotally mounted to a tensioner arm. The piston is slidably received within a hollow body that is pivotally mounted to a mounting block or engine. In different embodiments, the body is mounted to the tensioner arm while the piston is biased against the mounting block or pivotally connected to the mounting block or engine.
Abstract:
An on demand vehicle drive system monitors vehicle performance and operating conditions and controls torque delivery to the vehicle wheels. The system includes a plurality of speed and position sensors, a transfer case having primary and secondary output shafts driving primary and secondary axles and a microcontroller. The sensors include a vehicle speed sensor, a pair of primary and secondary drive shaft speed sensors, and brake and driveline status sensors. The transfer case includes a modulating electromagnetic clutch controlled by the microcontroller which is incrementally engaged to transfer torque from the primary output shaft to the secondary output shaft. When the speed of either the front or the rear drive shafts overruns, i.e., exceeds, the speed of the other drive shaft by a predetermined value related to the vehicle speed, indicating that wheel slip is present, clutch current is incrementally increased to increase clutch engagement and torque transfer to the secondary axle. When wheel slip is reduced below the predetermined value the current to the clutch is incrementally reduced. The method of operating such a system is also described.
Abstract:
A variable camshaft timing system comprising a camshaft (36) with a vane (20) secured to the camshaft for rotation with the camshaft but not for oscillation with respect to the camshaft. The vane has a circumferentially extending plurality of lobes (20, 22, 24) projecting radially outwardly therefrom and is surrounded by an annular housing (28) that has a corresponding plurality of recesses (30, 32, 34) each of which receives one of the lobes and has a circumferential extent greater than the circumferential extent of the lobe received therein to permit oscillation of the housing relative to the vane and the camshaft while the housing rotates with the camshaft and the vane. Oscillation of the housing relative to the vane and the camshaft is actuated by pressurized engine oil in each of the recesses on opposed sides of the lobe therein, the oil pressure in such recess being preferably derived in part from a torque pulse in the camshaft as it rotates during its operation. An annular locking plate (50) is positioned coaxially with the camshaft and the annular housing and is moveable relative to the annular housing along a longitudinal central axis of the camshaft between a first position, where the locking plate engages the annular housing to prevent its circumferential movement relative to the vane and a second position where circumferential movement of the annular housing relative to the vane is permitted. The locking plate is biased by a spring (52) toward its first position and is urged away from its first position toward its second position by engine oil pressure, to which it is exposed by a passage (48) leading through the camshaft, when engine oil pressure is sufficiently high to overcome the spring biasing force, which is the only time when it is desired to change the relative positions of the annular housing and the vane. The movement of the locking plate is controlled by an engine electronic control unit (46) either through a closed loop control system (FIG. 10) or an open loop control system (FIG. 11).
Abstract:
A hub is secured to a camshaft for rotation synchronous with the camshaft, and a housing circumscribes the hub and is rotatable with the hub and the camshaft and is further oscillatable with respect to the hub and the camshaft within a predetennined angle of rotation. Driving vanes are radially disposed within the housing and cooperate with an external surface on the hub, while driven vanes are radially disposed in the hub and cooperate with an internal surface of the housing. A locking device, reactive to oil pressure, prevents relative motion between the housing and the hub. A controlling device controls the oscillation of the housing relative to the hub.
Abstract:
The present invention relates to a torsionally compliant sprocket system which absorbs crankshaft torsional vibrations and minimizes their transfer to other components in the engine system. In particular, the present system interposes resilient spring members between a crankshaft sprocket and an adjacent balance shaft drive sprocket which are interconnected. A damping mechanism provides damping of the system to reduce resonant oscillations.
Abstract:
A chain tensioner system having a dual arm blade and a hydraulic tensioner. A hydraulic tensioner applies force against the free ends of the dual arms. Each arm is supported in two places, i.e., at the pivot point and against the tensioner piston. A face material that has a high P/V rating is added to the surface of the arm. The arms are simple flat plastic shoes with a hole at one end for the pivot point. A blade spring can be inserted into one or both of the plastic shoes. The tensioner piston moves in and out, the arms in the dual arm tensioner system slide against one another. As one of the tensioner arms applies the force to the chain the other arm damps the movement of the first arm.
Abstract:
An on demand vehicle drive system monitors vehicle performance and operating conditions and controls torque delivery to the vehicle wheels. The system includes a plurality of speed and position sensors, a transfer case having primary and secondary output shafts driving primary and secondary axles and a microcontroller. The sensors include a vehicle speed sensor, a pair of primary and secondary drive shaft speed sensors, and brake and driveline status sensors. The transfer case includes a modulating electromagnetic clutch controlled by the microcontroller which is incrementally engaged to transfer torque from the primary output shaft to the secondary output shaft. When the speed of either the front or the rear drive shafts overruns, i.e., exceeds, the speed of the other drive shaft by a predetermined value related to the vehicle speed, indicating that wheel slip is present, clutch current is incrementally increased to increase clutch engagement and torque transfer to the secondary axle. When wheel slip is reduced below the predetermined value the current to the clutch is incrementally reduced. The method of operating such a system is also described.
Abstract:
An on demand vehicle drive system monitors vehicle performance and operating conditions and controls torque delivery to the vehicle wheels. The system includes a plurality of speed and position sensors, a transfer case having primary and secondary output shafts driving primary and secondary drive shafts, differentials and axles and a microcontroller. The sensors include a vehicle speed sensor, a pair of primary and secondary drive shaft speed sensors, and brake and driveline status sensors. The transfer case includes a modulating electromagnetic clutch comprising a primary, cone clutch assembly which functions as a pilot device to actuate a secondary, disc pack clutch assembly. The electromagnetic clutch is controlled by the microcontroller which is incrementally engaged to transfer torque from the primary output shaft to the secondary output shaft. When the speed of either the front or the rear drive shaft overruns, i.e., exceeds, the speed of the other drive shaft by a predetermined value related to the vehicle speed and other variables, indicating that wheel slip is present, clutch current is incrementally increased to increase clutch engagement and torque transfer to the secondary drive shaft. When wheel slip is reduced below the predetermined value the current to the clutch is incrementally reduced. The system also senses and compensates for the speed differences between the primary and secondary drive axles caused by the use of different, mixed tire, sizes, e.g., a compact spare, at one or more tire locations by adjusting the predetermined value. The method of operating such a system is also described.
Abstract:
A vibration damper assembly to absorb vibrations in a camshaft and sprocket system has a sprocket positioned around a camshaft, an inertia ring positioned around the camshaft and adjacent the sprocket, yet capable of moving independently of the sprocket, and a hub member positioned around the camshaft adjacent the inertia ring. Frictional material is interposed between said hub member and a rim portion of the inertia ring whereby the inertia ring and hub member slide with respect to one another along said frictional material to absorb vibrations from the camshaft through heat dissipation.
Abstract:
An on demand vehicle drive system monitors vehicle performance and operating conditions and controls torque delivery to the vehicle wheels. The system includes a plurality of speed and position sensors, a transfer case having primary and secondary output shafts driving primary and secondary drive shafts, differentials and axles and a microcontroller. The sensors include a vehicle speed sensor, a pair of primary and secondary drive shaft speed sensors, and brake and driveline status sensors. The transfer case includes a modulating electromagnetic clutch comprising a primary, cone clutch assembly which functions as a pilot device to actuate a secondary, disc pack clutch assembly. The electromagnetic clutch is controlled by the microcontroller which is incrementally engaged to transfer torque from the primary output shaft to the secondary output shaft. When the speed of either the front or the rear drive shaft overruns, i.e., exceeds, the speed of the other drive shaft by a predetermined value related to the vehicle speed and other variables, indicating that wheel slip is present, clutch current is incrementally increased to increase clutch engagement and torque transfer to the secondary drive shaft. When wheel slip is reduced below the predetermined value the current to the clutch is incrementally reduced. The system also senses and compensates for the speed differences between the primary and secondary drive axles caused by the use of different, mixed tire, sizes, e.g., a compact spare, at one or more tire locations by adjusting the predetermined value. The method of operating such a system is also described.