Abstract:
Apparatuses, methods and systems for controlling lighting, an environment factor, or security of a structure are discloses. A lighting control system includes a plurality of lighting devices, a central server and a switch. The central server communicates with each of the plurality of lighting devices, and controls an operating configuration of each of the lighting devices. The switch communicates with at least some of the plurality of lighting devices, wherein the communication includes information, and wherein the at least some of the plurality of lighting devices respond to the information based on the operating configuration of the at least some of the plurality of lighting devices.
Abstract:
A virtual disk is comprised of segments of unused capacity of physical computer-readable storage media co-located with computing devices that are communicationally coupled to one another through network communications. The computing devices execute one or more of a client process, a storage process and a controller process. The controller processes manage the metadata of the virtual disk, including a virtual disk topology that defines the relationships between certain ones of the physical computer-readable storage media and a particular virtual disk. The client process provide data for storage to certain ones of the computing devices executing the storage processes, as defined by a virtual disk topology, and also read data from storage from those computing devices. The client process additionally expose the virtual disk in the same manner as any other computer-readable medium.
Abstract:
Methods, apparatuses, and computer program products for squaring an operand include identifying a fixed-point value with a fixed word size and a substring size for substrings of the fixed-point value, wherein the fixed-point value comprises a binary bit string. A square of the fixed-point value can be determined using the fixed point value, the substring size, and least significant bits of the fix-point value equal to the substring size.
Abstract:
Method, apparatus and systems for performing hardware-based memory migration and copy operations. Under the method, a first portion of memory in a computer system accessed via a first memory controller is migrated or copied to a second portion of memory accessed via a second memory controller using a hardware-based scheme that is implemented independent of and transparent to software running on a computer system. The memory migration and/or copy operations can be used to initialize a memory mirror configuration under which data in first and second portions of memory are mirrored, and to perform memory migration operations in which data in a first portion of memory is migrated to a second portion of memory under the control of hardware in a manner in which the memory migration can be performed during run-time without a significant reduction in performance. In addition, poison data indicating failed cache lines may be migrated or copied such that data corresponding to migrated or copied poisoned cache lines are not used.
Abstract:
A virtual disk is comprised of segments of unused capacity of physical computer-readable storage media co-located with computing devices that are communicationally coupled to one another through network communications. The computing devices execute one or more of a client process, a storage process and a controller process. The controller processes manage the metadata of the virtual disk, including a virtual disk topology that defines the relationships between certain ones of the physical computer-readable storage media and a particular virtual disk. The client process provide data for storage to certain ones of the computing devices executing the storage processes, as defined by a virtual disk topology, and also read data from storage from those computing devices. The client process additionally expose the virtual disk in the same manner as any other computer-readable medium.
Abstract:
A method for controlling a variable speed wind turbine generator is disclosed. The generator is connected to a power converter comprising switches. The generator comprises a stator and a set of terminals connected to the stator and to the switches of the power converter. The method comprises: determining a stator flux reference value corresponding to a generator power of a desired magnitude, determining an estimated stator flux value corresponding to an actual generator power, determining a difference between the determined stator flux reference value and the estimated stator flux value, and operating said switches in correspondence to the determined stator flux reference value and the estimated stator flux value to adapt at least one stator electrical quantity to obtain said desired generator power magnitude.
Abstract:
A method for controlling a variable speed wind turbine generator is disclosed. The generator is connected to a power converter comprising switches. The generator comprises a stator and a set of terminals connected to the stator and to the switches of the power converter. The method comprises: determining a stator flux reference value corresponding to a generator power of a desired magnitude, determining an estimated stator flux value corresponding to an actual generator power, determining a difference between the determined stator flux reference value and the estimated stator flux value, and operating said switches in correspondence to the determined stator flux reference value and the estimated stator flux value to adapt at least one stator electrical quantity to obtain said desired generator power magnitude.
Abstract:
Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
Abstract:
A method for high-resolution timing measurement includes a first oscillator generating a first clock with a first frequency. A second oscillator generates a second clock with a second frequency. A delay pulse generator generates a delayed pulse from the second clock. An oscillator tuner controls the second frequency to be as close as possible to the first frequency without being the same as the first frequency. A sampling module samples the delayed pulse at the first frequency. A counter generates a digital counter value by counting a number of samples made by the sampling module.