Abstract:
A trench isolation in a semiconductor substrate is provided. The trench isolation includes a recessed region in the semiconductor substrate. The trench isolation also has a first insulator layer lining the recessed region. The first insulator aligns with the semiconductor substrate at edge of the recessed region. The trench isolation further includes a second insulator layer filling within the recessed region over the first insulator. As a preferred embodiment, the recessed region can have well rounded corners at bottom and abutting top surface of the semiconductor substrate. The first insulator has inwardly increased height after the planarization process. The second insulator layer aligns with the first insulator at inner edge of the first insulator. The second insulator layer can also have a top plain region.
Abstract:
A method of making nanometer Si islands for single electron transistors is disclosed. Initially, a pad oxide is deposited over a silicon substrate. Oxygen ions are implanted into the silicon substrate to form an oxygen amorphized region and a high-temperature annealing is performed to form a buried oxide layer in the silicon substrate. Then, a thermal silicon oxide is formed to reduce the thickness of the silicon substrate on the buried oxide layer. The thermal oxide is removed and an ultra-thin oxide layer is then formed on the silicon substrate. A plurality of silicon nitride blocks is formed on the ultra-thin silicon oxide. Afterwards, the spacers of the silicon nitride blocks are formed. The silicon nitride blocks are removed by using wet etching technique. The ultra-thin silicon oxide is etched back and the polysilicon spacers are used as hard mask to Si substrate to form a plurality of nanometer silicon islands. The ultra-thin silicon oxide is removed and an ultra-thin oxynitride layer is regrown on the nanometer silicon islands. Finally, a n+ polysilicon layer is conformally deposited onto the silicon substrate and the nanometer silicon islands.
Abstract:
The method of the present invention includes patterning a gate structure. Then, a polyoxide layer is formed on side walls of the gate structure. Then, silicon nitride side wall spacers is formed on the side walls of the gate structure. Then, source/drain structure of the device is fabricated. Next, the side wall spacers is removed to expose a portion of the source and drain. Then, an undoped amorphous silicon layer is formed on the surface of the gate structure, the oxide layer and the exposed source and drain. A dry oxidation process is used to convert the amorphous silicon layer into textured tunnel oxide at the interface of the substrate and the oxide. A polysilicon layer is than formed, followed by chemical mechanical polishing the layer. A conductive layer is formed on the polysilicon layers. Subsequently, a silicon nitride layer deposited by jet vapor deposition (JVD) is formed on the conductive layer. A high k dielectric layer is next formed on the JVD nitride. A conductive layer to serve as control gate is subsequently formed on the high k dielectric layer. A patterning technique is used to pattern the layers.
Abstract:
The present invention includes a gate oxide. A gate is formed on the gate oxide. Undercut portions, formed under the gate. The substrate has recessed portions are adjacent to the gate. A silicon oxynitride layer is formed on the side walls of the gate and refilled into the undercut portions to be used as a portion of the gate oxide. Side wall spacers are formed on the side walls of the gate. A polycide layer is formed at the top of the gate to reduce the electrical resistance. Source and drain regions are formed in the recessed portions of the substrate. Lightly doped drain (LDD) structures are formed in the substrate adjacent to the gate and under the gate oxide. Extended source and drain are formed between the source and drain and the LDD structure to suppress the short channel effect. Self-aligned silicide (SALICIDE) layers are formed at top of the source and drain.
Abstract:
The method of metallization includes the steps as follows. At first, a semiconductor substrate is provided and a dielectric layer is formed over the semiconductor substrate. A portion of the dielectric layer is removed to form contact holes and a first conductive layer is formed within the contact holes and over the dielectric layer. A portion of the first conductive layer is removed to define a contact pattern. Using the first conductive layer as a mask, a portion of the dielectric layer is removed to form openings within the dielectric layer and over the first conductive layer. A second conductive layer is then formed within the openings and over the first conductive layer. To planarize the surface of the semiconductor substrate, a portion of the second conductive layer and the first conductive layer is removed to planarize to the dielectric layer.
Abstract:
This invention proposes a new process to form MOS transistor with a gate-side air-gap structure and an extension ultra-shallow S/D junction for high speed devices. After growing the thin gate oxide film on silicon substrate, a stacked-amorphous-Si (SAA) film is deposited. A thin CVD oxide film is deposited and then patterned. The top two amorphous-Si layers are etched back and then form the nitride spacers. The pad CVD oxide film is removed by diluted HF solution followed by S/D/G implant. High temperature thermal oxidation process is used to convert the bottom amorphous-Si layers outside the nitride spacers into thermal oxide and simultaneously to form shallow junction. The nitride spacers are removed and then the low energy/high dose ion implantation is performed for extension S/D junction. The bottom amorphous-Si layer is etched back and then RTP anneal in N.sub.2 O or NO ambient is used to recover the etching damage to form an extension S/D junction. A thick CVD oxide film is deposited on all regions. Due to the step coverage issue, a air-gap structure would be formed at the gate side.
Abstract:
This invention proposes a process to form planarized twin-wells for CMOS devices. After depositing a pad oxide and a silicon nitride layers, a high-energy phosphorus ion implantation is performed to form the N-well by using a photoresist as s mask. A thick oxide layer deposited by liquid phase deposition process is then grown on the N-well region part of the silicon nitride layer, but not on the photoresist. After stripping the photoresist, a high-energy boron ion implantation is carried out to form the P-well by using the LPD-oxide layer as a mask. The thick LPD-oxide layer is removed by BOE or HF solution. A high temperature steam oxidation is performed to grow field oxides. The dopants are activated and driven in to form twin-wells at this step. After removing the pad oxide and the silicon nitride layer, the CMOS device is fabricated by standard processes.
Abstract:
The present invention includes forming an oxide layer on a substrate. An undoped polysilicon layers is deposited by chemical vapor deposition on the gate oxide layer. Next, a silicon nitride layer is successively formed on the polysilicon layer to act as an anti-reflective coating (ARC). Then, the undoped polysilicon layer, ARC layer, and the oxide layer are patterned to form ultra short channel polysilicon gates. A thermal annealing is performed to recover the etching damage in the substrate and generate a pad oxide layer on the surface of the polysilicon gate and the substrate. An nitrogen-doped amorphous silicon layer is formed on the gate structure and on the pad oxide. Next, an ion implantation is carried out to dope dopants into the gate and substrate, thereby forming source and drain. A steam oxidation is performed to convert the nitrogen-doped amorphous silicon layer to a nitrogen-doped thermal silicon dioxide layer. Simultaneously, an ultra-shallow extended source and drain junction adjacent to the gate structure is obtained by using the amorphous silicon layer as a diffusion source. Subsequently, the nitrogen-doped silicon dioxide layer is etched back to form oxide spacers. Then, the cap silicon nitride layer are removed. Then, two-step silicidation process are used to form silicided contacts.
Abstract:
This invention discloses a novel design to fabricate a ring-like capacitor in a semiconductor memory device for increasing the area of the capacitor electrodes. The ring-like conductive structure of the electrode of the capacitor includes a mushroom-shaped member having a flat-headed cap and a stem coupled to the source region of the semiconductor memory device, a solid cylindrical member disposed on the cap of the mushroom-shaped member, and a side-wall spacer being a hollow cylindrical member disposed on the cap of said mushroom-shaped member to increase the area of the capacitor electrodes thereby increasing the capacitance of the capacitor to provide a sufficient capacitance while maintaining high integration in semiconductor memory cells.
Abstract:
A method to fabricate simultaneously a CMOS transistor and an ESD protective transistor in a silicon substrate is disclosed. The NMOS transistor and PMOS transistor in the portion of the CMOS transistor have both anti-punchthrough and salicide structures and individually with n-LDD and p-LDD structure, respectively. The structure of ESD protective devices is fabricated with self-aligned silicide but without LDD, thus the degradation of ESD protection can be solved. The problems of accumulative aberration in scaled devices can also be alleviated through using blanket ion implantation technology and salicide process to reduce the mask count as shown in the invention.